Ramsey numbers of Berge-hypergraphs and related structures
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nika Salia | - |
dc.contributor.author | Casey Tompkins | - |
dc.contributor.author | Zhiyu Wang | - |
dc.contributor.author | Oscar Zamora | - |
dc.date.available | 2020-01-31T00:50:15Z | - |
dc.date.created | 2019-12-11 | - |
dc.date.issued | 2019-12 | - |
dc.identifier.issn | 1077-8926 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/6696 | - |
dc.description.abstract | For a graph G = (V;E), a hypergraph H is called a Berge-G, denoted by BG, if there is an injection i : V (G) ! V (H) and a bijection f : E(G) ! E(H) such that for all e = uv 2 E(G), we have fi(u); i(v)g f(e). Let the Ramsey num- ber Rr(BG;BG) be the smallest integer n such that for any 2-edge-coloring of a complete r-uniform hypergraph on n vertices, there is a monochromatic Berge-G subhypergraph. In this paper, we show that the 2-color Ramsey number of Berge cliques is linear. In particular, we show that R3(BKs;BKt) = s + t 3 for s; t > 4 and maxfs; tg > 5 where BKn is a Berge-Kn hypergraph. For higher uniformity, we show that R4(BKt;BKt) = t+1 for t > 6 and Rk(BKt;BKt) = t for k > 5 and t suciently large. We also investigate the Ramsey number of trace hypergraphs, suspension hypergraphs and expansion hypergraphs. c The authors. Released under the CC BY license (International 4.0). | - |
dc.language | 영어 | - |
dc.publisher | ELECTRONIC JOURNAL OF COMBINATORICS | - |
dc.title | Ramsey numbers of Berge-hypergraphs and related structures | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000506405700001 | - |
dc.identifier.scopusid | 2-s2.0-85076495776 | - |
dc.identifier.rimsid | 70755 | - |
dc.contributor.affiliatedAuthor | Casey Tompkins | - |
dc.identifier.doi | 10.37236/8892 | - |
dc.identifier.bibliographicCitation | ELECTRONIC JOURNAL OF COMBINATORICS, v.26, no.4, pp.P4.40 | - |
dc.relation.isPartOf | ELECTRONIC JOURNAL OF COMBINATORICS | - |
dc.citation.title | ELECTRONIC JOURNAL OF COMBINATORICS | - |
dc.citation.volume | 26 | - |
dc.citation.number | 4 | - |
dc.citation.startPage | P4.40 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | TURAN NUMBERS | - |
dc.subject.keywordPlus | CYCLES | - |