On the Chern numbers for pseudo-free circle actions
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Byung Hee An | - |
dc.contributor.author | Yunhyung Cho | - |
dc.date.available | 2019-11-13T07:34:18Z | - |
dc.date.created | 2019-06-17 | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 1527-5256 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/6489 | - |
dc.description.abstract | Let (M, psi) be a (2n + 1)-dimensional oriented closed manifold with a pseudo-free S-1-action psi : S-1 x M -> M. We first define a local data L (M, psi) of the action which consists of pairs (C, (p (C); (q) over right arrow (C))) where C is an exceptional orbit, p (C) is the order of isotropy subgroup of C, and (q) over right arrow (C) is an element of (Z(p(C)) (x))(n) is a vector whose entries are the weights of the slice representation of C. In this paper, we give an explicit formula of the Chern number < c(1)(E)(n), [M/S-1]> modulo Z in terms of the local data, where E = M x (S1) C is the associated complex line orbibundle over M/S-1. Also, we illustrate several applications to various problems arising in equivariant symplectic topology. c.International Press of Boston, Inc. | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | INT PRESS BOSTON, INC | - |
dc.title | On the Chern numbers for pseudo-free circle actions | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000468768600001 | - |
dc.identifier.rimsid | 68509 | - |
dc.contributor.affiliatedAuthor | Byung Hee An | - |
dc.identifier.bibliographicCitation | JOURNAL OF SYMPLECTIC GEOMETRY, v.17, no.1, pp.1 - 40 | - |
dc.citation.title | JOURNAL OF SYMPLECTIC GEOMETRY | - |
dc.citation.volume | 17 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 40 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | EQUIVALENCE | - |