Covering radius in the Hamming permutation space
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hendrey, K. | - |
dc.contributor.author | Wanless, IM. | - |
dc.date.available | 2019-11-13T07:28:23Z | - |
dc.date.created | 2019-10-21 | - |
dc.date.issued | 2020-02 | - |
dc.identifier.issn | 0195-6698 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/6394 | - |
dc.description.abstract | © 2019 Elsevier LtdLet Sn denote the set of permutations of {1,2,…,n}. The function f(n,s) is defined to be the minimum size of a subset S⊆Sn with the property that for any ρ∈Sn there exists some σ∈S such that the Hamming distance between ρ and σ is at most n−s. The value of f(n,2) is the subject of a conjecture by Kézdy and Snevily, which implies several famous conjectures about Latin squares. We prove that the odd n case of the Kézdy–Snevily Conjecture implies the whole conjecture. We also show that f(n,2)>3n∕4 for all n, that s!<f(n,s)<3s!(n−s)logn for 1⩽s⩽n−2 and that f(n,s)> [Formula presented] [Formula presented] if s⩾3 | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD | - |
dc.title | Covering radius in the Hamming permutation space | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000499761900003 | - |
dc.identifier.scopusid | 2-s2.0-85072782852 | - |
dc.identifier.rimsid | 70220 | - |
dc.contributor.affiliatedAuthor | Hendrey, K. | - |
dc.identifier.doi | 10.1016/j.ejc.2019.103025 | - |
dc.identifier.bibliographicCitation | EUROPEAN JOURNAL OF COMBINATORICS, v.84, pp.103025 | - |
dc.citation.title | EUROPEAN JOURNAL OF COMBINATORICS | - |
dc.citation.volume | 84 | - |
dc.citation.startPage | 103025 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | SETS | - |