BROWSE

Related Scientist

kevin,hendrey's photo.

kevin,hendrey
이산수학그룹
more info

ITEM VIEW & DOWNLOAD

Covering radius in the Hamming permutation space

DC Field Value Language
dc.contributor.authorHendrey, K.-
dc.contributor.authorWanless, IM.-
dc.date.available2019-11-13T07:28:23Z-
dc.date.created2019-10-21-
dc.date.issued2020-02-
dc.identifier.issn0195-6698-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/6394-
dc.description.abstract© 2019 Elsevier LtdLet Sn denote the set of permutations of {1,2,…,n}. The function f(n,s) is defined to be the minimum size of a subset S⊆Sn with the property that for any ρ∈Sn there exists some σ∈S such that the Hamming distance between ρ and σ is at most n−s. The value of f(n,2) is the subject of a conjecture by Kézdy and Snevily, which implies several famous conjectures about Latin squares. We prove that the odd n case of the Kézdy–Snevily Conjecture implies the whole conjecture. We also show that f(n,2)>3n∕4 for all n, that s!<f(n,s)<3s!(n−s)logn for 1⩽s⩽n−2 and that f(n,s)> [Formula presented] [Formula presented] if s⩾3-
dc.description.uri1-
dc.language영어-
dc.publisherACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD-
dc.titleCovering radius in the Hamming permutation space-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000499761900003-
dc.identifier.scopusid2-s2.0-85072782852-
dc.identifier.rimsid70220-
dc.contributor.affiliatedAuthorHendrey, K.-
dc.identifier.doi10.1016/j.ejc.2019.103025-
dc.identifier.bibliographicCitationEUROPEAN JOURNAL OF COMBINATORICS, v.84, pp.103025-
dc.citation.titleEUROPEAN JOURNAL OF COMBINATORICS-
dc.citation.volume84-
dc.citation.startPage103025-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusSETS-
Appears in Collections:
Pioneer Research Center for Mathematical and Computational Sciences(수리 및 계산과학 연구단) > Discrete Mathematics Group(이산 수학 그룹) > 1. Journal Papers (저널논문)
Files in This Item:
Covering radius in the Hamming permutation.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse