Mussel-Inspired Defect Engineering of Graphene Liquid Crystalline Fibers for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity
DC Field | Value | Language |
---|---|---|
dc.contributor.author | In Ho Kim | - |
dc.contributor.author | Taeyeong Yun | - |
dc.contributor.author | Jae-Eun Kim | - |
dc.contributor.author | Hayoung Yu | - |
dc.contributor.author | Suchithra Padmajan Sasikala | - |
dc.contributor.author | Kyung Eun Lee | - |
dc.contributor.author | Sung Hwan Koo | - |
dc.contributor.author | Hoseong Hwang | - |
dc.contributor.author | Hong Ju Jung | - |
dc.contributor.author | Jeong Young Park | - |
dc.contributor.author | Hyeon Su Jeong | - |
dc.contributor.author | Sang Ouk Kim | - |
dc.date.available | 2019-09-25T07:25:52Z | - |
dc.date.created | 2019-06-19 | - |
dc.date.issued | 2018-10 | - |
dc.identifier.issn | 0935-9648 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/6186 | - |
dc.description.abstract | Inspired by mussel adhesive polydopamine (PDA), effective reinforcement of graphene-based liquid crystalline fibers to attain high mechanical and electrical properties simultaneously is presented. The two-step defect engineering, relying on bioinspired surface polymerization and subsequent solution infiltration of PDA, addresses the intrinsic limitation of graphene fibers arising from the folding and wrinkling of graphene layers during the fiber-spinning process. For a clear understanding of the mechanism of PDA-induced defect engineering, interfacial adhesion between graphene oxide sheets is straightforwardly analyzed by the atomic force microscopy pull-off test. Subsequently, PDA could be converted into an N-doped graphitic layer within the fiber structure by a mild thermal treatment such that mechanically strong fibers could be obtained without sacrificing electrical conductivity. Bioinspired graphene-based fiber holds great promise for a wide range of applications, including flexible electronics, multifunctional textiles, and wearable sensors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | WILEY-V C H VERLAG GMBH | - |
dc.subject | electrical conductivity | - |
dc.subject | graphene fibers | - |
dc.subject | graphene oxide | - |
dc.subject | mechanical strength | - |
dc.subject | polydopamine | - |
dc.title | Mussel-Inspired Defect Engineering of Graphene Liquid Crystalline Fibers for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000446056700015 | - |
dc.identifier.scopusid | 2-s2.0-85052643208 | - |
dc.identifier.rimsid | 68691 | - |
dc.contributor.affiliatedAuthor | Jae-Eun Kim | - |
dc.contributor.affiliatedAuthor | Jeong Young Park | - |
dc.identifier.doi | 10.1002/adma.201803267 | - |
dc.identifier.bibliographicCitation | ADVANCED MATERIALS, v.30, no.40, pp.1803267 | - |
dc.citation.title | ADVANCED MATERIALS | - |
dc.citation.volume | 30 | - |
dc.citation.number | 40 | - |
dc.citation.startPage | 1803267 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | ATOMIC-FORCE MICROSCOPY | - |
dc.subject.keywordPlus | CARBON NANOTUBE FIBERS | - |
dc.subject.keywordPlus | FUNCTIONALIZED GRAPHENE | - |
dc.subject.keywordPlus | OXIDE | - |
dc.subject.keywordPlus | ADHESION | - |
dc.subject.keywordPlus | POLYDOPAMINE | - |
dc.subject.keywordPlus | DISPERSIONS | - |
dc.subject.keywordPlus | NANOSHEETS | - |
dc.subject.keywordPlus | POLYMER | - |
dc.subject.keywordPlus | YARNS | - |
dc.subject.keywordAuthor | electrical conductivity | - |
dc.subject.keywordAuthor | graphene fibers | - |
dc.subject.keywordAuthor | graphene oxide | - |
dc.subject.keywordAuthor | mechanical strength | - |
dc.subject.keywordAuthor | polydopamine | - |