BROWSE

Related Scientist

cmsd's photo.

cmsd
분자분광학및동력학연구단
more info

ITEM VIEW & DOWNLOAD

Enhancing entanglement detection of quantum optical frequency combs via stimulated emission

DC Field Value Language
dc.contributor.authorArkhipov, Ievgen I.-
dc.contributor.authorTai Hyun Yoon-
dc.contributor.authorMiranowicz, Adam-
dc.date.available2019-09-25T07:25:40Z-
dc.date.created2019-04-23-
dc.date.issued2019-03-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/6179-
dc.description.abstractWe investigate the performance of a certain nonclassicality identifier, expressed via integrated second-order intensity moments of optical fields, in revealing bipartite entanglement of quantum-optical frequency combs (QOFCs), which are generated in both spontaneous and stimulated parametric down-conversion processes. We show that, by utilizing that nonclassicality identifier, one can well identify the entanglement of the QOFC directly from the experimentally measured intensity moments without invoking any state reconstruction techniques or homodyne detection. Moreover, we demonstrate that the stimulated generation of the QOFC improves the entanglement detection of these fields with the nonclassicality identifier. Additionally, we show that the nonclassicality identifier can be expressed in a factorized form of detectors quantum efficiencies and the number of modes, if the QOFC consists of many copies of the same two-mode twin beam. As an example, we apply the nonclassicality identifier to two specific types of QOFC, where: (i) the QOFC consists of many independent two-mode twin beams with non-overlapped spatial frequency modes, and (ii) the QOFC contains entangled spatial frequency modes which are completely overlapped, i.e., each mode is entangled with all the remaining modes in the system. We show that, in both cases, the nonclassicality identifier can reveal bipartite entanglement of the QOFC including noise, and that it becomes even more sensitive for the stimulated processes. © 2019, The Author(s)-
dc.description.uri1-
dc.language영어-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectFrequency combs, Nonlinear optics, Quantum optics, Single photons and quantum effects-
dc.titleEnhancing entanglement detection of quantum optical frequency combs via stimulated emission-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000462149800045-
dc.identifier.scopusid2-s2.0-85063447805-
dc.identifier.rimsid67901-
dc.contributor.affiliatedAuthorTai Hyun Yoon-
dc.identifier.doi10.1038/s41598-019-41545-y-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.9, no.1, pp.5090-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume9-
dc.citation.number1-
dc.citation.startPage5090-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusNOBEL LECTURE-
dc.subject.keywordPlusNONCLASSICALITY-
dc.subject.keywordPlusCRITERION-
dc.subject.keywordPlusTIME-
Appears in Collections:
Center for Molecular Spectroscopy and Dynamics(분자 분광학 및 동력학 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
Enhancing entanglement detection of quantum optical frequency combs_Dr. Ievgen, 윤태현.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse