BROWSE

Related Scientist

cncr's photo.

cncr
나노물질및화학반응연구단
more info

ITEM VIEW & DOWNLOAD

Influence of hydrogen incorporation on conductivity and work function of VO2 nanowires

DC Field Value Language
dc.contributor.authorJae-Eun Kim-
dc.contributor.authorJung Yeol Shin-
dc.contributor.authorHyun-Seok Jang-
dc.contributor.authorJun Woo Jeon-
dc.contributor.authorWon G. Hong-
dc.contributor.authorHae Jin Kim-
dc.contributor.authorJunhee Choi-
dc.contributor.authorGyu-Tae Kim-
dc.contributor.authorByung Hoon Kim-
dc.contributor.authorJonghyurk Park-
dc.contributor.authorYoung Jin Choi-
dc.contributor.authorJeong Young Park-
dc.date.available2019-08-19T02:07:11Z-
dc.date.created2019-06-17-
dc.date.issued2019-03-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/6021-
dc.description.abstractWe report improved conductance by reducing the work function via incorporation of hydrogen into VO2 nanowires. The VO2 nanowires were prepared using the chemical vapor deposition method with V2O5 powder on silicon substrates at 850 degrees C. Hydrogenation was carried out using the high-pressure hydrogenation method. Raman spectroscopy confirmed that the incorporated hydrogen atoms resulted in a change in the lattice constant of the VO2 nanowires (NWs). To quantitatively measure the work function of the nanowires, Kelvin probe force microscopy (KPFM) was employed at ambient conditions. We found that the work function decreased with increasing H-2 pressure, which also resulted in increased conductance. This is associated with hydrogen diffused into the VO2 that acts as a donor to elevate the Fermi level, which was also confirmed by KPFM. From these results, tuning of the reversible electrical properties of VO2 NWs, including the conductance and work function, can be achieved by incorporating hydrogen at relatively moderate temperatures.-
dc.description.uri1-
dc.language영어-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleInfluence of hydrogen incorporation on conductivity and work function of VO2 nanowires-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000465410200008-
dc.identifier.scopusid2-s2.0-85062591726-
dc.identifier.rimsid68503-
dc.contributor.affiliatedAuthorJae-Eun Kim-
dc.contributor.affiliatedAuthorJeong Young Park-
dc.identifier.doi10.1039/c9nr00245f-
dc.identifier.bibliographicCitationNANOSCALE, v.11, no.10, pp.4219 - 4225-
dc.citation.titleNANOSCALE-
dc.citation.volume11-
dc.citation.number10-
dc.citation.startPage4219-
dc.citation.endPage4225-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusMETAL-INSULATOR-TRANSITION-
dc.subject.keywordPlusVANADIUM DIOXIDE-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusOPTICAL-PROPERTIES-
dc.subject.keywordPlusPHASE-TRANSITION-
dc.subject.keywordPlusSTABILIZATION-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusTEMPERATURE-
Appears in Collections:
Center for Nanomaterials and Chemical Reactions(나노물질 및 화학반응 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
Nanoscale, 2019, 11, 4219–4225.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse