Steering Coacervation by a Pair of Broad-Spectrum Regulators
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shenyu Yang | - |
dc.contributor.author | Bo Li | - |
dc.contributor.author | Chunxian Wu | - |
dc.contributor.author | Weiwei Xu | - |
dc.contributor.author | Mei Tu | - |
dc.contributor.author | Yun Yan | - |
dc.contributor.author | Jianbin Huang | - |
dc.contributor.author | Markus Drechsler | - |
dc.contributor.author | Steve Granick | - |
dc.contributor.author | Lingxiang Jiang | - |
dc.date.available | 2019-05-02T08:08:43Z | - |
dc.date.created | 2019-02-18 | - |
dc.date.issued | 2019-02 | - |
dc.identifier.issn | 1936-0851 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/5702 | - |
dc.description.abstract | Coacervation is liquid-liquid phase separation ubiquitous in industrial applications and cellular biology. Inspired by cellular manipulation of coacervate droplets such as P granules, we report here a regulatory strategy to manipulate synthetic coacervation in a spatiotemporally controllable manner. Two oppositely charged small molecules are shown to phase separate into coacervate droplets in water as a result of electrostatic attraction, hydrophobic effect, and entropy. We identify a down regulator, β-cyclodextrin, to disrupt the hydrophobic effect, thus dissolving the droplets, and an up regulator, amylase, to decompose β-cyclodextrin, thus restoring the droplets. The regulation kinetics is followed in real time on a single-droplet level, revealing diffusion-limited dissolution and reaction-limited condensation, respectively, taking ∼4 s and 2-3 min. Versatility of this strategy to manipulate the coacervation is demonstrated in two aspects: spatially distributed coacervation in virtue of amylase-grafted hydrogel frameworks and coacervate transportation across membranes and hydrogel networks via a disassemble-to-pass strategy. The current regulatory pairs and strategies are anticipated to be general for a wide variety of synthetic self-assembly systems. Copyright © 2019 American Chemical Society | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.subject | biomimicry | - |
dc.subject | coacervation | - |
dc.subject | cyclodextrin | - |
dc.subject | enzymes | - |
dc.subject | patterning | - |
dc.subject | regulators | - |
dc.subject | transportation | - |
dc.title | Steering Coacervation by a Pair of Broad-Spectrum Regulators | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000460199400141 | - |
dc.identifier.scopusid | 2-s2.0-85061284808 | - |
dc.identifier.rimsid | 67058 | - |
dc.contributor.affiliatedAuthor | Bo Li | - |
dc.contributor.affiliatedAuthor | Steve Granick | - |
dc.contributor.affiliatedAuthor | Lingxiang Jiang | - |
dc.identifier.doi | 10.1021/acsnano.8b09332 | - |
dc.identifier.bibliographicCitation | ACS NANO, v.13, no.2, pp.2420 - 2426 | - |
dc.citation.title | ACS NANO | - |
dc.citation.volume | 13 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 2420 | - |
dc.citation.endPage | 2426 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | biomimicry | - |
dc.subject.keywordAuthor | coacervation | - |
dc.subject.keywordAuthor | cyclodextrin | - |
dc.subject.keywordAuthor | enzymes | - |
dc.subject.keywordAuthor | patterning | - |
dc.subject.keywordAuthor | regulators | - |
dc.subject.keywordAuthor | transportation | - |