RNA tails play integral roles in the regulation of messenger RNA (mRNA) translation and decay. Guanylation of the poly(A) tail was discovered recently, yet the enzymology and function remain obscure. Here we identify TENT4A (PAPD7) and TENT4B (PAPD5) as the enzymes responsible for mRNA guanylation. Purified TENT4 proteins generate amixed poly(A) tail with intermittent non-adenosine residues, the most common of which is guanosine. A single guanosine residue is sufficient to impede the deadenylase CCR4-NOT complex, which trims the tail and exposes guanosine at the 3' end. Consistently, depletion of TENT4A and TENT4B leads to a decrease in mRNA half-life and abundance in cells. Thus, TENT4A and TENT4B produce a mixed tail that shields mRNA from rapid deadenylation. Our study unveils the role of mixed tailing and expands the complexity of posttranscriptional gene regulation.