In-situ PECVD-enabled graphene-V2O3 hybrid host for lithium–sulfur batteries
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yingze Song | - |
dc.contributor.author | Wen Zhao | - |
dc.contributor.author | Nan Wei | - |
dc.contributor.author | Li Zhang | - |
dc.contributor.author | Feng Ding | - |
dc.contributor.author | Zhongfan Liu | - |
dc.contributor.author | Jingyu Sun | - |
dc.date.available | 2019-02-12T10:44:24Z | - |
dc.date.created | 2018-09-17 | - |
dc.date.issued | 2018-11 | - |
dc.identifier.issn | 2211-2855 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/5520 | - |
dc.description.abstract | Lithium–sulfur (Li–S) batteries have been regarded as promising candidates for current energy-storage technologies due to their remarkable advantages in energy density and theoretical capacity. However, one of the daunting challenges remained for advanced Li–S systems thus far deals with the synchronous suppression of polysulfide (LiPS) shuttle and acceleration of redox kinetics. Herein, a cooperative interface bridging adsorptive V2O3 and conductive graphene is constructed in-situ by virtue of direct plasma-enhanced chemical vapor deposition (PECVD), resulting in the design of a novel V2O3-graphene hybrid host to synergize the LiPS entrapment and conversion. The redox kinetics and electrochemical performances of thus-derived cathodes were accordingly enhanced owing to the smooth adsorption-diffusion-conversion of LiPSs even at a sulfur mass loading of 3.7 mg cm–2. Such interfacial engineering offers us a valuable opportunity to gain insight into the comprehensive regulation of LiPS anchoring ability, electrical conductivity and ion diffusive capability in hybrid hosts on suppressing the LiPS shuttle and propelling the redox kinetics. Our devised PECVD route might pave a new route toward the facial and economic design of hetero-phased multi-functional hosts for high-performance Li–S systems. © 2018 Elsevier Ltd. | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | Elsevier BV | - |
dc.subject | Graphene-V2O3 hybrid | - |
dc.subject | Lithium-sulfur batteries | - |
dc.subject | Plasma-enhanced chemical vapor deposition | - |
dc.subject | Polysulfide shuttle | - |
dc.subject | Redox kinetics | - |
dc.title | In-situ PECVD-enabled graphene-V2O3 hybrid host for lithium–sulfur batteries | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000448994600048 | - |
dc.identifier.scopusid | 2-s2.0-85053011281 | - |
dc.identifier.rimsid | 65460 | - |
dc.contributor.affiliatedAuthor | Wen Zhao | - |
dc.contributor.affiliatedAuthor | Feng Ding | - |
dc.identifier.doi | 10.1016/j.nanoen.2018.09.002 | - |
dc.identifier.bibliographicCitation | NANO ENERGY, v.53, pp.432 - 439 | - |
dc.citation.title | NANO ENERGY | - |
dc.citation.volume | 53 | - |
dc.citation.startPage | 432 | - |
dc.citation.endPage | 439 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | LI-S BATTERIES | - |
dc.subject.keywordPlus | METAL SULFIDES | - |
dc.subject.keywordPlus | HIGH-CAPACITY | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | POLYSULFIDES | - |
dc.subject.keywordPlus | CATHODES | - |
dc.subject.keywordPlus | NANOTUBES | - |
dc.subject.keywordPlus | SURFACE | - |
dc.subject.keywordPlus | CONVERSION | - |
dc.subject.keywordPlus | DIFFUSION | - |
dc.subject.keywordAuthor | Lithium-sulfur batteries | - |
dc.subject.keywordAuthor | Polysulfide shuttle | - |
dc.subject.keywordAuthor | Plasma-enhanced chemical vapor deposition | - |
dc.subject.keywordAuthor | Redox kinetics | - |
dc.subject.keywordAuthor | Graphene-V2O3 hybrid | - |