Generalized Einstein-Scalar-Maxwell theories and locally geometric U-folds
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Calin Iuliu Lazaroiu | - |
dc.contributor.author | C.S. Shahbazi | - |
dc.date.available | 2019-01-30T02:01:57Z | - |
dc.date.created | 2019-01-03 | - |
dc.date.issued | 2018-06 | - |
dc.identifier.issn | 0129-055X | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/5453 | - |
dc.description.abstract | We give the global mathematical formulation of the coupling of four-dimensional scalar sigma models to Abelian gauge fields on a Lorentzian four-manifold, for the generalized situation when the duality structure of the Abelian gauge theory is described by a flat symplectic vector bundle (S, D, ω) defined over the scalar manifold M. The construction uses a taming of (S, ω), which we find to be the correct mathematical object globally encoding the inverse gauge couplings and theta angles of the “twisted” Abelian gauge theory in a manner that makes no use of duality frames. We show that global solutions of the equations of motion of such models give classical locally geometric U-folds. We also describe the groups of duality transformations and scalar-electromagnetic symmetries arising in such models, which involve lifting isometries of M to the bundle S and hence differ from expectations based on local analysis. The appropriate version of the Dirac quantization condition involves a discrete local system defined over M and gives rise to a smooth bundle of polarized Abelian varieties, endowed with a flat symplectic connection. This shows, in particular, that a generalization of part of the mathematical structure familiar from N = 2 supergravity is already present in such purely bosonic models, without any coupling to fermions and hence without any supersymmetry | - |
dc.language | 영어 | - |
dc.publisher | WORLD SCIENTIFIC PUBL CO PTE LTD | - |
dc.title | Generalized Einstein-Scalar-Maxwell theories and locally geometric U-folds | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000433555200002 | - |
dc.identifier.scopusid | 2-s2.0-85046097740 | - |
dc.identifier.rimsid | 66534 | - |
dc.contributor.affiliatedAuthor | Calin Iuliu Lazaroiu | - |
dc.identifier.doi | 10.1142/S0129055X18500125 | - |
dc.identifier.bibliographicCitation | REVIEWS IN MATHEMATICAL PHYSICS, v.30, no.5, pp.1850012 | - |
dc.relation.isPartOf | REVIEWS IN MATHEMATICAL PHYSICS | - |
dc.citation.title | REVIEWS IN MATHEMATICAL PHYSICS | - |
dc.citation.volume | 30 | - |
dc.citation.number | 5 | - |
dc.citation.startPage | 1850012 | - |
dc.embargo.liftdate | 9999-12-31 | - |
dc.embargo.terms | 9999-12-31 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |