Strong Nonlinear Optical Response in the Visible Spectral Range with Epsilon-Near-Zero Organic Thin Films

Cited 0 time in webofscience Cited 0 time in scopus
34 Viewed 1 Downloaded
Title
Strong Nonlinear Optical Response in the Visible Spectral Range with Epsilon-Near-Zero Organic Thin Films
Author(s)
Yeon Ui Lee; Eleonora Garoni; Hanayo Kita; Kenji Kamada; Byung Hoon Woo; Young Chul Jun; Sang Min Chae; Hyo Jung Kim; Kwang Jin Lee; Seokhyun Yoon; Eunyoung Choi; Fabrice Mathevet; Igor Ozerov; Jean Charles Ribierre; Jeong Weon Wu; Anthony D’Aléo
Publication Date
2018-07
Journal
ADVANCED OPTICAL MATERIALS, v.6, no.14, pp.1701400-1 - 1701400-12
Publisher
WILEY-VCH Verlag GmbH
Abstract
Enhanced Kerr nonlinearities are observed in metamaterials such as conducting oxides and doped inorganic semiconductor thin films showing epsilon‐near‐zero (ENZ) response in the infrared region. However, to achieve ENZ in the visible, artificial metamaterials with more complex nanostructures have to be specifically designed. Here, using sodium [5,6‐dichloro‐2‐[[5,6‐dichloro‐1‐ethyl‐3‐(4‐sulphobutyl)‐benzimidazol‐2‐ylidene]‐propenyl]‐1‐ethyl‐3‐(4‐sulphobutyl)‐benzimidazolium hydroxide] and [2,4‐bis[8‐hydroxy‐1,1,7,7‐tetramethyljulolidin‐9‐yl]squaraine] organic thin films, ENZ responses between 450 and 620 nm are demonstrated. Both nonlinear refractive index and nonlinear absorption coefficient are enhanced by more than two orders of magnitude in the ENZ spectral region. These optical effects in the visible spectral range come from the strongly dispersive permittivity of molecular aggregates resulting from the coupling of excitonic transition dipoles. These findings open the path toward a next generation of high‐performance solution‐processable organic nonlinear optical materials with ENZ properties that can be tuned by molecular engineering. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
URI
https://pr.ibs.re.kr/handle/8788114/5263
ISSN
2195-1071
Appears in Collections:
Center for Quantum Nanoscience(양자나노과학 연구단) > Journal Papers (저널 논문)
Files in This Item:
Lee_et_al-2018-Advanced_Optical_Materials (1).pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse