Oxidatively Modified Protein-Disulfide Isomerase?Associated 3 Promotes Dyskerin Pseudouridine Synthase 1?Mediated Malignancy and Survival of Hepatocellular Carcinoma Cells

Cited 0 time in webofscience Cited 0 time in scopus
15 Viewed 3 Downloaded
Title
Oxidatively Modified Protein-Disulfide Isomerase?Associated 3 Promotes Dyskerin Pseudouridine Synthase 1?Mediated Malignancy and Survival of Hepatocellular Carcinoma Cells
Author(s)
Eunkyong Ko; Jong-Seo Kim; Soomi Ju; Hyun-Wook Seo; Yeonji Chang; Jung-Ah Kang; Sung-Gyoo Park; Guhung Jung
Publication Date
2018-11
Journal
HEPATOLOGY, v.68, no.5, pp.1851 - 1864
Publisher
WILEY-BLACKWELL
Abstract
Dyskerin pseudouridine synthase 1 (DKC1) is a conserved gene encoding the RNA-binding protein dyskerin, which is an essential component of the telomerase holoenzyme. DKC1 up-regulation is frequently observed in many different human cancers including hepatocellular carcinoma (HCC); however, its regulatory mechanisms remain unclear. Thus, we investigated the regulatory mechanism of DKC1 in HCC progression. We found that protein-disulfide isomerase-associated 3 (PDIA3) interacted with the DKC1 regulatory DNA in HCC cells but not in HCC cells with elevated reactive oxygen species (ROS) levels, using liquid chromatographic?tandem mass spectrometric analysis after isolating the DKC1 regulatory region binding proteins. PDIA3 repressed DKC1 expression in HCC cells by recognizing the G-quadruplex DNA at the DKC1 location. However, oxidative modification of PDIA3 induced by ROS redistributed this protein into the cytosolic regions, which stimulated DKC1 expression. We also identified Met338 in PDIA3 as the oxidatively modified residue and validated the effect of oxidative modification using an ectopic expression system, a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 knock-in system, and a xenograft mouse model. We observed that oxidatively modified PDIA3 promoted DKC1-mediated malignancy and survival of HCC cells in vitro and in vivo. HCC tissues showed a positive association with ROS, cytoplasmic PDIA3, and nuclear DKC1 levels. HCC patients with high PDIA3 protein and DKC1 mRNA levels also displayed reduced recurrence-free survival rates. Cumulatively, the results showed that cytoplasmic PDIA3 activity could be essential in raising DKC1 expression in HCC progression and predicting poor prognoses in HCC patients. Conclusion: Our study indicates that the elevated ROS levels in HCC modulate cytoplasmic PDIA3 levels, resulting in HCC cell survival through DKC1 up-regulation. (c) 2018 by the American Association for the Study of Liver Diseases
URI
https://pr.ibs.re.kr/handle/8788114/5071
ISSN
0270-9139
Appears in Collections:
Center for RNA Research(RNA 연구단) > Journal Papers (저널논문)
Files in This Item:
Ko_et_al-2018-Hepatology.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse