A magnetic resonance tuning sensor for the MRI detection of biological targets
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tae-Hyun Shin | - |
dc.contributor.author | Sunghwi Kang | - |
dc.contributor.author | Sohyeon Park | - |
dc.contributor.author | Jin-sil Choi | - |
dc.contributor.author | Pan Ki Kim | - |
dc.contributor.author | Jinwoo Cheon | - |
dc.date.available | 2019-01-03T05:30:15Z | - |
dc.date.created | 2018-11-20 | - |
dc.date.issued | 2018-11 | - |
dc.identifier.issn | 1754-2189 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/5043 | - |
dc.description.abstract | Sensors that detect specific molecules of interest in a living organism can be useful tools for studying biological functions and diseases. Here, we provide a protocol for the construction of nanosensors that can non-invasively detect biologically important targets with magnetic resonance imaging (MRI). The key operating principle of these sensors is magnetic resonance tuning (MRET), a distance-dependent phenomenon occurring between a superparamagnetic quencher and a paramagnetic enhancer. The change in distance between the two magnetic components modulates the longitudinal (T-1) relaxivity of the enhancer. In this MRET sensor, distance variation is achieved by interactive linkers that undergo binding, cleavage, or folding/unfolding upon their interaction with target molecules. By the modular incorporation of suitable linkers, the MRET sensor can be applied to a wide range of targets. We showcase three examples of MRET sensors for enzymes, nucleic acid sequences, and pH. This protocol comprises three stages: (i) chemical synthesis and surface modification of the quencher, (ii) conjugation with interactive linkers and enhancers, and (iii) MRI sensing of biological targets. The entire procedure takes up to 3 d | - |
dc.language | 영어 | - |
dc.publisher | NATURE PUBLISHING GROUP | - |
dc.title | A magnetic resonance tuning sensor for the MRI detection of biological targets | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000448980400011 | - |
dc.identifier.scopusid | 2-s2.0-85055468430 | - |
dc.identifier.rimsid | 66039 | - |
dc.contributor.affiliatedAuthor | Tae-Hyun Shin | - |
dc.contributor.affiliatedAuthor | Sunghwi Kang | - |
dc.contributor.affiliatedAuthor | Sohyeon Park | - |
dc.contributor.affiliatedAuthor | Jin-sil Choi | - |
dc.contributor.affiliatedAuthor | Pan Ki Kim | - |
dc.contributor.affiliatedAuthor | Jinwoo Cheon | - |
dc.identifier.doi | 10.1038/s41596-018-0057-y | - |
dc.identifier.bibliographicCitation | NATURE PROTOCOLS, v.13, no.11, pp.2664 - 2684 | - |
dc.relation.isPartOf | NATURE PROTOCOLS | - |
dc.citation.title | NATURE PROTOCOLS | - |
dc.citation.volume | 13 | - |
dc.citation.number | 11 | - |
dc.citation.startPage | 2664 | - |
dc.citation.endPage | 2684 | - |
dc.embargo.liftdate | 9999-12-31 | - |
dc.embargo.terms | 9999-12-31 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Biochemical Research Methods | - |
dc.subject.keywordPlus | IRON-OXIDE NANOPARTICLES | - |
dc.subject.keywordPlus | CONTRAST AGENTS | - |
dc.subject.keywordPlus | CANCER | - |
dc.subject.keywordPlus | FRET | - |
dc.subject.keywordPlus | NANOCRYSTALS | - |
dc.subject.keywordPlus | T-1 | - |