On B-type Open–Closed Landau–Ginzburg Theories Defined on Calabi–Yau Stein Manifolds
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Babalic E.M. | - |
dc.contributor.author | Doryn D. | - |
dc.contributor.author | Lazaroiu C.I. | - |
dc.contributor.author | Tavakol M. | - |
dc.date.available | 2018-07-18T02:07:49Z | - |
dc.date.created | 2018-06-26 | - |
dc.date.issued | 2018-08 | - |
dc.identifier.issn | 0010-3616 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/4742 | - |
dc.description.abstract | We consider the bulk algebra and topological D-brane category arising from the differential model of the open–closed B-type topological Landau–Ginzburg theory defined by a pair (X,W), where X is a non-compact Calabi–Yau manifold and W is a complex-valued holomorphic function. When X is a Stein manifold (but not restricted to be a domain of holomorphy), we extract equivalent descriptions of the bulk algebra and of the category of topological D-branes which are constructed using only the analytic space associated to X. In particular, we show that the D-brane category is described by projective factorizations defined over the ring of holomorphic functions of X. We also discuss simplifications of the analytic models which arise when X is holomorphically parallelizable and illustrate these in a few classes of examples. © 2018 Springer-Verlag GmbH Germany, part of Springer Natur © The Royal Society of Chemistry 2018 | - |
dc.language | 영어 | - |
dc.publisher | SPRINGER | - |
dc.title | On B-type Open–Closed Landau–Ginzburg Theories Defined on Calabi–Yau Stein Manifolds | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000440111100004 | - |
dc.identifier.scopusid | 2-s2.0-85047133402 | - |
dc.identifier.rimsid | 63876 | ko |
dc.date.tcdate | 2018-06-26 | - |
dc.contributor.affiliatedAuthor | Babalic E.M. | - |
dc.contributor.affiliatedAuthor | Doryn D. | - |
dc.contributor.affiliatedAuthor | Lazaroiu C.I. | - |
dc.contributor.affiliatedAuthor | Tavakol M. | - |
dc.identifier.doi | 10.1007/s00220-018-3153-5 | - |
dc.identifier.bibliographicCitation | COMMUNICATIONS IN MATHEMATICAL PHYSICS, v.362, pp.1 - 37 | - |
dc.relation.isPartOf | COMMUNICATIONS IN MATHEMATICAL PHYSICS | - |
dc.citation.title | COMMUNICATIONS IN MATHEMATICAL PHYSICS | - |
dc.citation.volume | 362 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 37 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.scptc | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |