Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hui Kwon Kim | - |
dc.contributor.author | Seonwoo Min | - |
dc.contributor.author | Myungjae Song | - |
dc.contributor.author | Soobin Jung | - |
dc.contributor.author | Jae Woo Choi | - |
dc.contributor.author | Younggwang Kim | - |
dc.contributor.author | Sangeun Lee | - |
dc.contributor.author | Sungroh Yoon | - |
dc.contributor.author | Hyongbum Kim | - |
dc.date.available | 2018-07-18T02:04:48Z | - |
dc.date.created | 2018-05-16 | - |
dc.date.issued | 2018-03 | - |
dc.identifier.issn | 1087-0156 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/4612 | - |
dc.description.abstract | We present two algorithms to predict the activity of AsCpf1 guide RNAs. Indel frequencies for 15,000 target sequences were used in a deep-learning framework based on a convolutional neural network to train Seq-deepCpf1. We then incorporated chromatin accessibility information to create the better-performing DeepCpf1 algorithm for cell lines for which such information is available and show that both algorithms outperform previous machine learning algorithms on our own and published data sets | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | NATURE PUBLISHING GROUP | - |
dc.title | Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000426698700017 | - |
dc.identifier.scopusid | 2-s2.0-85042934649 | - |
dc.identifier.rimsid | 63282 | - |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Hyongbum Kim | - |
dc.identifier.doi | 10.1038/nbt.4061 | - |
dc.identifier.bibliographicCitation | NATURE BIOTECHNOLOGY, v.36, no.3, pp.239 - + | - |
dc.citation.title | NATURE BIOTECHNOLOGY | - |
dc.citation.volume | 36 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 239 | - |
dc.citation.endPage | + | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 5 | - |
dc.description.scptc | 5 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | HUMAN-CELLS | - |
dc.subject.keywordPlus | NEURAL-NETWORKS | - |
dc.subject.keywordPlus | SGRNA DESIGN | - |
dc.subject.keywordPlus | OFF-TARGET | - |
dc.subject.keywordPlus | IN-VIVO | - |
dc.subject.keywordPlus | GENOME | - |
dc.subject.keywordPlus | CPF1 | - |
dc.subject.keywordPlus | SPECIFICITIES | - |
dc.subject.keywordPlus | SYSTEM | - |
dc.subject.keywordPlus | MICE | - |