BROWSE

Related Scientist

cmcm's photo.

cmcm
다차원탄소재료연구단
more info

ITEM VIEW & DOWNLOAD

Mechanically Assisted Self-Healing of Ultrathin Gold Nanowires

DC Field Value Language
dc.contributor.authorBinjun Wang-
dc.contributor.authorYing Han-
dc.contributor.authorShang Xu-
dc.contributor.authorLu Qiu-
dc.contributor.authorFeng Ding-
dc.contributor.authorJun Lou-
dc.contributor.authorYang Lu-
dc.date.available2018-07-18T02:03:14Z-
dc.date.created2018-06-26-
dc.date.issued2018-05-
dc.identifier.issn1613-6810-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/4529-
dc.description.abstractAs the critical feature sizes of integrated circuits approaching sub-10 nm, ultrathin gold nanowires (diameter < 10 nm) have emerged as one of the most promising candidates for next-generation interconnects in nanoelectronics. Also due to their ultrasmall dimensions, however, the structures and morphologies of ultrathin gold nanowires are more prone to be damaged during practical services, for example, Rayleigh instability can significantly alter their morphologies upon Joule heating, hindering their applications as interconnects. Here, it is shown that upon mechanical perturbations, predamaged, nonuniform ultrathin gold nanowires can quickly recover into uniform diameters and restore their smooth surfaces, via a simple mechanically assisted self-healing process. By examining the local self-healing process through in situ high-resolution transmission electron microscopy, the underlying mechanism is believed to be associated with surface atomic diffusion as evidenced by molecular dynamics simulations. In addition, mechanical manipulation can assist the atoms to overcome the diffusion barriers, as suggested by ab initio calculations, to activate more surface adatoms to diffuse and consequently speed up the self-healing process. This result can provide a facile method to repair ultrathin metallic nanowires directly in functional devices, and quickly restore their microstructures and morphologies by simple global mechanical perturbations © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.description.uri1-
dc.language영어-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectin situ TEM-
dc.subjectnanomanufacturing-
dc.subjectRayleigh instability-
dc.subjectself-healing-
dc.subjectultrathin gold nanowires-
dc.titleMechanically Assisted Self-Healing of Ultrathin Gold Nanowires-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000434172700012-
dc.identifier.scopusid2-s2.0-85045729186-
dc.identifier.rimsid63782ko
dc.contributor.affiliatedAuthorLu Qiu-
dc.contributor.affiliatedAuthorFeng Ding-
dc.identifier.doi10.1002/smll.201704085-
dc.identifier.bibliographicCitationSMALL, v.14, no.20, pp.1704085-
dc.citation.titleSMALL-
dc.citation.volume14-
dc.citation.number20-
dc.citation.startPage1704085-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusRAYLEIGH-INSTABILITY-
dc.subject.keywordPlusSURFACE-DIFFUSION-
dc.subject.keywordPlusAU NANOWIRES-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusTRANSFORMATION-
dc.subject.keywordPlusINTERCONNECTS-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusCRYSTALS-
dc.subject.keywordPlusCONTACT-
dc.subject.keywordPlusSILVER-
dc.subject.keywordAuthorin situ TEM-
dc.subject.keywordAuthornanomanufacturing-
dc.subject.keywordAuthorRayleigh instability-
dc.subject.keywordAuthorself-healing-
dc.subject.keywordAuthorultrathin gold nanowires-
Appears in Collections:
Center for Multidimensional Carbon Materials(다차원 탄소재료 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
5. Wang_et_al-2018-Small.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse