BROWSE

Related Scientist

kim,teunteun's photo.

kim,teunteun
나노구조물리연구단
more info

ITEM VIEW & DOWNLOAD

Electrically Tunable Slow Light Using Graphene MetamaterialsHighly Cited Paper

DC Field Value Language
dc.contributor.authorTeun-Teun Kim-
dc.contributor.authorHyeon-Don Kim-
dc.contributor.authorRongkuo Zhao-
dc.contributor.authorSang Soon Oh-
dc.contributor.authorTaewoo Ha-
dc.contributor.authorDong Seob Chung-
dc.contributor.authorYoung Hee Lee-
dc.contributor.authorBumki Min-
dc.contributor.authorShuang Zhang-
dc.date.available2018-07-18T02:02:49Z-
dc.date.created2018-06-26-
dc.date.issued2018-05-
dc.identifier.issn2330-4022-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/4517-
dc.description.abstractMetamaterials with classical analogues of electromagnetically induced transparency open new avenues in photonics for realizing smaller, more efficient slow light devices without quantum approaches. However, most of the metamaterial-based slow light devices are passive, which limits their practical applications. Here, by combining diatomic metamaterials with a gated single-layer graphene, we demonstrate that the group delay of terahertz light can be dynamically controlled under a small gate voltage. Using a two coupled harmonic oscillators model, we show that this active control of group delay is made possible by an effective control of the dissipative loss of the radiative dark resonator by varying the graphene's optical conductivity. Our work may provide opportunities in the design of various applications such as compact slow light devices and ultrasensitive sensors and switches. © 2018 American Chemical Society-
dc.description.uri1-
dc.language영어-
dc.publisherAMER CHEMICAL SOC-
dc.subjectelectromagnetically induced transparency-
dc.subjectgraphene-
dc.subjectmetamaterial-
dc.subjectslow light-
dc.subjectterahertz-
dc.titleElectrically Tunable Slow Light Using Graphene Metamaterials-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000432751800025-
dc.identifier.scopusid2-s2.0-85047203036-
dc.identifier.rimsid63880ko
dc.date.tcdate2018-10-01-
dc.contributor.affiliatedAuthorTeun-Teun Kim-
dc.contributor.affiliatedAuthorTaewoo Ha-
dc.contributor.affiliatedAuthorDong Seob Chung-
dc.contributor.affiliatedAuthorYoung Hee Lee-
dc.identifier.doi10.1021/acsphotonics.7b01551-
dc.identifier.bibliographicCitationACS PHOTONICS, v.5, no.5, pp.1800 - 1807-
dc.citation.titleACS PHOTONICS-
dc.citation.volume5-
dc.citation.number5-
dc.citation.startPage1800-
dc.citation.endPage1807-
dc.date.scptcdate2018-10-01-
dc.description.wostc5-
dc.description.scptc5-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusELECTROMAGNETICALLY INDUCED TRANSPARENCY-
dc.subject.keywordPlusPLASMON-INDUCED TRANSPARENCY-
dc.subject.keywordPlusSPLIT-RING RESONATORS-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusANALOG-
dc.subject.keywordAuthorslow light-
dc.subject.keywordAuthormetamaterial-
dc.subject.keywordAuthorgraphene-
dc.subject.keywordAuthorelectromagnetically induced transparency-
dc.subject.keywordAuthorterahertz-
Appears in Collections:
Center for Integrated Nanostructure Physics(나노구조물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
Electrically Tunable_ACS Photonics_Teun-Teun Kim.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse