Equivariant Pieri rules for isotropic Grassmannians
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Changzheng Li | - |
dc.contributor.author | Vijay Ravikumar | - |
dc.date.available | 2018-01-10T04:36:22Z | - |
dc.date.created | 2018-01-05 | - |
dc.date.issued | 2016-06 | - |
dc.identifier.issn | 0025-5831 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/4251 | - |
dc.description.abstract | We give a Pieri rule for the torus-equivariant cohomology of (submaximal) Grassmannians of Lie types B, C, and D. To the authors’ best knowledge, our rule is the first manifestly positive formula, beyond the equivariant Chevalley formula. We also give a simple proof of the equivariant Pieri rule for the ordinary (type A) Grassmannian. © Springer-Verlag Berlin Heidelberg 2015 | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | SPRINGER | - |
dc.title | Equivariant Pieri rules for isotropic Grassmannians | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000376068300030 | - |
dc.identifier.scopusid | 2-s2.0-84939433665 | - |
dc.identifier.rimsid | 61882 | - |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Changzheng Li | - |
dc.identifier.doi | 10.1007/s00208-015-1266-0 | - |
dc.identifier.bibliographicCitation | MATHEMATISCHE ANNALEN, v.365, no.1-2, pp.881 - 909 | - |
dc.citation.title | MATHEMATISCHE ANNALEN | - |
dc.citation.volume | 365 | - |
dc.citation.number | 1-2 | - |
dc.citation.startPage | 881 | - |
dc.citation.endPage | 909 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 2 | - |
dc.description.scptc | 0 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |