Direct Realization of Complete Conversion and Agglomeration Dynamics of SnO2 Nanoparticles in Liquid Electrolyte
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Joon Ha Chang | - |
dc.contributor.author | Jun Young Cheong | - |
dc.contributor.author | Jong Min Yuk | - |
dc.contributor.author | Kim C. | - |
dc.contributor.author | Sung Joo Kim | - |
dc.contributor.author | Hyeon Kook Seo | - |
dc.contributor.author | Kim I.-D. | - |
dc.contributor.author | Lee J.Y. | - |
dc.date.available | 2018-01-03T00:36:10Z | - |
dc.date.created | 2017-11-17 | - |
dc.date.issued | 2017-10 | - |
dc.identifier.issn | 2470-1343 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/4132 | - |
dc.description.abstract | The conversion reaction is important in lithium-ion batteries because it governs the overall battery performance, such as initial Coulombic efficiency, capacity retention, and rate capability. Here, we have demonstrated in situ observation of the complete conversion reaction and agglomeration of nanoparticles (NPs) upon lithiation by using graphene liquid cell transmission electron microscopy. The observation reveals that the Sn NPs are nucleated from the surface of SnO2, followed by merging with each other. We demonstrate that the agglomeration has a stepwise process, including rotation of a NP, formation of necks, and subsequent merging of individual NPs. | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.title | Direct Realization of Complete Conversion and Agglomeration Dynamics of SnO2 Nanoparticles in Liquid Electrolyte | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000418744000006 | - |
dc.identifier.scopusid | 2-s2.0-85032635300 | - |
dc.identifier.rimsid | 60939 | ko |
dc.date.tcdate | 2017-11-17 | - |
dc.contributor.affiliatedAuthor | Joon Ha Chang | - |
dc.contributor.affiliatedAuthor | Sung Joo Kim | - |
dc.contributor.affiliatedAuthor | Hyeon Kook Seo | - |
dc.contributor.affiliatedAuthor | Lee J.Y. | - |
dc.identifier.doi | 10.1021/acsomega.7b01046 | - |
dc.identifier.bibliographicCitation | ACS OMEGA, v.2, no.10, pp.6329 - 6336 | - |
dc.relation.isPartOf | ACS OMEGA | - |
dc.citation.title | ACS OMEGA | - |
dc.citation.volume | 2 | - |
dc.citation.number | 10 | - |
dc.citation.startPage | 6329 | - |
dc.citation.endPage | 6336 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.scptc | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.subject.keywordPlus | LITHIUM-ION BATTERIES | - |
dc.subject.keywordPlus | REAL-TIME OBSERVATION | - |
dc.subject.keywordPlus | MICROSCOPY OBSERVATION | - |
dc.subject.keywordPlus | NANOCRYSTAL GROWTH | - |
dc.subject.keywordPlus | ANODE MATERIAL | - |
dc.subject.keywordPlus | SITU | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | LITHIATION | - |
dc.subject.keywordPlus | CAPACITY | - |
dc.subject.keywordPlus | MECHANISMS | - |