Synthesis of compositionally tunable, hollow mixed metal sulphide CoxNiySz octahedral nanocages and their composition-dependent electrocatalytic activities for oxygen evolution reaction
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jun Kim | - |
dc.contributor.author | Haneul Jin | - |
dc.contributor.author | Aram Oh | - |
dc.contributor.author | Hionsuck Baik | - |
dc.contributor.author | Sang Hoon Joo | - |
dc.contributor.author | Kwangyeol Lee | - |
dc.date.available | 2017-12-19T00:55:09Z | - |
dc.date.created | 2017-12-13 | - |
dc.date.issued | 2017-10 | - |
dc.identifier.issn | 2040-3364 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/4076 | - |
dc.description.abstract | Hollow nanostructures such as nanocages and nanoframes can serve as advanced catalysts with their enlarged active surface areas, and hence they have been of widespread interest. Despite the recent progress in the synthesis of this class of nanomaterials, hollow nanostructures with tunable compositions and controlled morphologies have rarely been reported. Here, we report a facile synthetic route to a series of compositionally tunable, hollow mixed metal sulphide (CoxNiySz) octahedral nanocages. The sulfidation of CoO octahedral nanoparticles generates CoO@CoxSy core–shell octahedra, and the in situ etching of the CoO core and annealing yield Co9S8 (pentlandite) octahedral nanocages (ONC). The addition of a Ni precursor during the etching/annealing process of CoO@CoxSy core–shell octahedra progressively yields hollow ONC structures of Co9−xNixS8, Ni9S8, Ni9S8/β-NiS, and Ni3S2/β-NiS via cation exchange reactions. Mixed cobalt/nickel sulphide, Co9−xNixS8 ONC, shows superior oxygen evolution reaction activity to monometallic sulphide ONC structures, demonstrating the synergy between different metal species. This journal is © The Royal Society of Chemistry 2017 | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | ROYAL SOC CHEMISTRY | - |
dc.title | Synthesis of compositionally tunable, hollow mixed metal sulphide CoxNiySz octahedral nanocages and their composition-dependent electrocatalytic activities for oxygen evolution reaction | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000413905200019 | - |
dc.identifier.scopusid | 2-s2.0-85031934331 | - |
dc.identifier.rimsid | 61739 | - |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Jun Kim | - |
dc.contributor.affiliatedAuthor | Kwangyeol Lee | - |
dc.identifier.doi | 10.1039/C7NR04327A | - |
dc.identifier.bibliographicCitation | NANOSCALE, v.9, no.40, pp.15397 - 15406 | - |
dc.citation.title | NANOSCALE | - |
dc.citation.volume | 9 | - |
dc.citation.number | 40 | - |
dc.citation.startPage | 15397 | - |
dc.citation.endPage | 15406 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 6 | - |
dc.description.scptc | 5 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |