BROWSE

Related Scientist

grzybowski,bartoszandrzej's photo.

grzybowski,bartoszandrzej
인공지능및로봇기반합성연구단
more info

ITEM VIEW & DOWNLOAD

Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient?

DC Field Value Language
dc.contributor.authorSkoraczynski, G-
dc.contributor.authorDittwald, P-
dc.contributor.authorMiasojedow, B-
dc.contributor.authorSzymkuc, S-
dc.contributor.authorGajewska, EP-
dc.contributor.authorBartosz Grzybowski-
dc.contributor.authorA. Gambin-
dc.date.available2017-09-05T04:46:09Z-
dc.date.created2017-07-19ko
dc.date.issued2017-12-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/3636-
dc.description.abstractAs machine learning/artificial intelligence algorithms are defeating chess masters and, most recently, GO champions, there is interest -and hope -that they will prove equally useful in assisting chemists in predicting outcomes of organic reactions. This paper demonstrates, however, that the applicability of machine learning to the problems of chemical reactivity over diverse types of chemistries remains limited -in particular, with the currently available chemical descriptors, fundamental mathematical theorems impose upper bounds on the accuracy with which raction yields and times can be predicted. Improving the performance of machine-learning methods calls for the development of fundamentally new chemical descriptors. © The Author(s) 2017-
dc.description.uri1-
dc.language영어-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectCheminformatics,Computational science-
dc.titlePredicting the outcomes of organic reactions via machine learning: are current descriptors sufficient?-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000403314500030-
dc.identifier.scopusid2-s2.0-85020943110-
dc.identifier.rimsid59778ko
dc.date.tcdate2018-10-01-
dc.contributor.affiliatedAuthorBartosz Grzybowski-
dc.identifier.doi10.1038/s41598-017-02303-0-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.7, no.1, pp.3582-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume7-
dc.citation.number1-
dc.citation.startPage3582-
dc.date.scptcdate2018-10-01-
dc.description.wostc10-
dc.description.scptc10-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusNEURAL-NETWORKS-
dc.subject.keywordPlusCHEMICAL-REACTIONS-
dc.subject.keywordPlusREACTION YIELDS-
dc.subject.keywordPlusBIG DATA-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusCLASSIFICATION-
Appears in Collections:
Center for Soft and Living Matter(첨단연성물질 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
2017_Sci.Rep._Predicting the outcomes of organic_Bartosz.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse