Mirror symmetry for exceptional unimodular singularities
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Changzheng Li | - |
dc.contributor.author | Li S. | - |
dc.contributor.author | Saito K. | - |
dc.contributor.author | Shen Y. | - |
dc.date.available | 2017-05-19T01:12:15Z | - |
dc.date.created | 2017-04-24 | - |
dc.date.issued | 2017-04 | - |
dc.identifier.issn | 1435-9855 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/3429 | - |
dc.description.abstract | In this paper, we prove the mirror symmetry conjecture between the Saito-Givental theory of exceptional unimodular singularities on the Landau-Ginzburg B-side and the Fan-Jarvis-Ruan-Witten theory of their mirror partners on the Landau-Ginzburg A-side. On the B-side, we develop a perturbative method to compute the genus-0 correlation functions associated to the primitive forms. This is applied to the exceptional unimodular singularities, and we show that the numerical invariants match the orbifold-Grothendieck-Riemann-Roch and WDVV calculations in FJRW theory on the A-side. The coincidence of the full data at all genera is established by reconstruction techniques. Our result establishes the first examples of LG-LG mirror symmetry for weighted homogeneous polynomials of central charge greater than one (i.e. which contain negative degree deformation parameters). © European Mathematical Society 2017 | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | EUROPEAN MATHEMATICAL SOC | - |
dc.subject | FJRW theory | - |
dc.subject | Landau-Ginzburg model | - |
dc.subject | Mirror symmetry | - |
dc.subject | Primitive form | - |
dc.subject | Singularity | - |
dc.title | Mirror symmetry for exceptional unimodular singularities | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000402474800008 | - |
dc.identifier.scopusid | 2-s2.0-85016461353 | - |
dc.identifier.rimsid | 59326 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Changzheng Li | - |
dc.identifier.doi | 10.4171/JEMS/691 | - |
dc.identifier.bibliographicCitation | JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, v.19, no.4, pp.1189 - 1229 | - |
dc.citation.title | JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY | - |
dc.citation.volume | 19 | - |
dc.citation.number | 4 | - |
dc.citation.startPage | 1189 | - |
dc.citation.endPage | 1229 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.scptc | 0 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | FJRW theory | - |
dc.subject.keywordAuthor | Landau-Ginzburg model | - |
dc.subject.keywordAuthor | Mirror symmetry | - |
dc.subject.keywordAuthor | Primitive form | - |
dc.subject.keywordAuthor | Singularity | - |