A modular approach to cubic Thue-Mahler equations
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dohyeong Kim | - |
dc.date.available | 2017-05-19T01:12:09Z | - |
dc.date.created | 2017-04-24 | - |
dc.date.issued | 2017-05 | - |
dc.identifier.issn | 0025-5718 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/3424 | - |
dc.description.abstract | Let h(x, y) be a non-degenerate binary cubic form with integral coefficients, and let S be an arbitrary finite set of prime numbers. By a classical theorem of Mahler, there are only finitely many pairs of relatively prime integers x, y such that h(x, y) is an S-unit. In the present paper, we reverse a well-known argument, which seems to go back to Shafarevich, and use the modularity of elliptic curves over Q to give upper bounds for the number of solutions of such a Thue-Mahler equation. In addition, our methods give an effective method for determining all solutions, and we use Cremona's Elliptic Curve Database to give a wide range of numerical examples. © 2016 American Mathematical Society | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMER MATHEMATICAL SOC | - |
dc.title | A modular approach to cubic Thue-Mahler equations | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000395905700014 | - |
dc.identifier.scopusid | 2-s2.0-85016210892 | - |
dc.identifier.rimsid | 59322 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Dohyeong Kim | - |
dc.identifier.doi | 10.1090/mcom/3139 | - |
dc.identifier.bibliographicCitation | MATHEMATICS OF COMPUTATION, v.86, no.305, pp.1435 - 1471 | - |
dc.citation.title | MATHEMATICS OF COMPUTATION | - |
dc.citation.volume | 86 | - |
dc.citation.number | 305 | - |
dc.citation.startPage | 1435 | - |
dc.citation.endPage | 1471 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 1 | - |
dc.description.scptc | 0 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | EXPONENTIAL DIOPHANTINE EQUATIONS | - |
dc.subject.keywordPlus | ELLIPTIC-CURVES | - |
dc.subject.keywordPlus | NUMBER | - |