BROWSE

Related Scientist

cnir's photo.

cnir
뇌과학이미징연구단
more info

ITEM VIEW & DOWNLOAD

Dual Electrochemical Microsensor for Real-Time Simultaneous Monitoring of Nitric Oxide and Potassium Ion Changes in a Rat Brain during Spontaneous Neocortical Epileptic Seizure

DC Field Value Language
dc.contributor.authorJungmi Moon-
dc.contributor.authorYejin Ha-
dc.contributor.authorMisun Kim-
dc.contributor.authorJeongeun Sim-
dc.contributor.authorYoungmi Lee-
dc.contributor.authorMinah Suh-
dc.date.available2017-01-02T08:17:47Z-
dc.date.created2016-10-17-
dc.date.issued2016-09-
dc.identifier.issn0003-2700-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/3128-
dc.description.abstractIn this work, we developed a dual amperometric/potentiometric microsensor for sensing nitric oxide (NO) and potassium ion (K+). The dual NO/K+ sensor was prepared based on a dual recessed electrode possessing Pt (diameter, 50 μm) and Ag (diameter, 76.2 μm) microdisks. The Pt disk surface (WE1) was modified with electroplatinization and the following coating with fluorinated xerogel; and the Ag disk surface (WE2) was oxidized to AgCl on which K+ ion selective membrane was loaded subsequent to the silanization. WE1 and WE2 of a dual microsensor were used for amperometric sensing of NO (106 ± 28 pA μM-1, n = 10, at +0.85 V applied vs Ag/AgCl) and for potentiometric sensing of K+ (51.6 ± 1.9 mV pK-1, n = 10), respectively, with high sensitivity. In addition, the sensor showed good selectivity over common biological interferents, sufficiently fast response time and relevant stability (within 6 h in vivo experiment). The sensor had a small dimension (end plane diameter, 428 ± 97 μm, n = 20) and needle-like sharp geometry which allowed the sensor to be inserted in biological tissues. Taking advantage of this insertability, the sensor was applied for the simultaneous monitoring of NO and K+ changes in a living rat brain cortex at a depth of 1.19 ± 0.039 mm and near the spontaneous epileptic seizure focus. The seizures were induced with 4-aminopyridine injection onto the rat brain cortex. NO and K+ levels were dynamically changed in clear correlation with the electrophysiological recording of seizures. This indicates that the dual NO/K+ sensor's measurements well reflect membrane potential changes of neurons and associated cellular components of neurovascular coupling. The newly developed NO/K+ dual microsensor showed the feasibility of real-time fast monitoring of dynamic changes of closely linked NO and K+ in vivo. © 2016 American Chemical Society-
dc.description.uri1-
dc.language영어-
dc.publisherAMER CHEMICAL SOC-
dc.titleDual Electrochemical Microsensor for Real-Time Simultaneous Monitoring of Nitric Oxide and Potassium Ion Changes in a Rat Brain during Spontaneous Neocortical Epileptic Seizure-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000384038400005-
dc.identifier.scopusid2-s2.0-84988528043-
dc.identifier.rimsid57456ko
dc.date.tcdate2018-10-01-
dc.contributor.affiliatedAuthorJeongeun Sim-
dc.contributor.affiliatedAuthorMinah Suh-
dc.identifier.doi10.1021/acs.analchem.6b02396-
dc.identifier.bibliographicCitationANALYTICAL CHEMISTRY, v.88, no.18, pp.8942 - 8948-
dc.citation.titleANALYTICAL CHEMISTRY-
dc.citation.volume88-
dc.citation.number18-
dc.citation.startPage8942-
dc.citation.endPage8948-
dc.date.scptcdate2018-10-01-
dc.description.wostc4-
dc.description.scptc4-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Appears in Collections:
Center for Neuroscience Imaging Research (뇌과학 이미징 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
cal Microsensor for Real-Time Simultaneous Monitoring of Nitric Oxide.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse