On the conjecture O of GGI for G/P
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Daewoong Cheong | - |
dc.contributor.author | ChangZheng Li | - |
dc.date.available | 2017-01-02T06:51:19Z | - |
dc.date.created | 2016-11-23 | - |
dc.date.issued | 2017-01 | - |
dc.identifier.issn | 0001-8708 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/3080 | - |
dc.description.abstract | In this paper, we show that general homogeneous manifolds G/P satisfy Conjecture O of Galkin, Golyshev and Iritani which ‘underlies’ Gamma conjectures I and II of them. Our main tools are the quantum Chevalley formula for G/P and a theory on nonnegative matrices including Perron–Frobenius theorem. © 2016 Elsevier Inc. | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | - |
dc.subject | Conjecture O | - |
dc.subject | Gamma conjectures | - |
dc.subject | Quantum cohomology | - |
dc.title | On the conjecture O of GGI for G/P | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000409285100020 | - |
dc.identifier.scopusid | 2-s2.0-84994240220 | - |
dc.identifier.rimsid | 57704 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | ChangZheng Li | - |
dc.identifier.doi | 10.1016/j.aim.2016.10.033 | - |
dc.identifier.bibliographicCitation | ADVANCES IN MATHEMATICS, v.306, pp.704 - 721 | - |
dc.citation.title | ADVANCES IN MATHEMATICS | - |
dc.citation.volume | 306 | - |
dc.citation.startPage | 704 | - |
dc.citation.endPage | 721 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 1 | - |
dc.description.scptc | 2 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | Conjecture O | - |
dc.subject.keywordAuthor | Gamma conjectures | - |
dc.subject.keywordAuthor | Quantum cohomology | - |