Enhanced homotopy theory for period integrals of smooth projective hypersurfaces
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jae-Suk Park | - |
dc.contributor.author | Park J. | - |
dc.date.available | 2016-10-06T06:36:09Z | - |
dc.date.created | 2016-08-19 | - |
dc.date.issued | 2016-06 | - |
dc.identifier.issn | 1931-4523 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/2832 | - |
dc.description.abstract | The goal of this paper is to reveal hidden structures on the singular cohomology and the Griffiths period integral of a smooth projective hypersurface in terms of BV(Batalin-Vilkovisky) algebras and homotopy Lie theory (so called, L∞-homotopy theory). Let XG be a smooth projective hypersurface in the complex projective space Pn defined by a homogeneous polynomial G(x) of degree d ≥ 1. Let H = Hn-1 prim(XG, C) be the middle dimensional primitive cohomology of XG. We explicitly construct a BV algebra BVX = (AX,QX,KX) such that its 0-th cohomology H0 K X (AX) is canonically isomorphic to H. We also equip BVX with a decreasing filtration and a bilinear pairing which realize the Hodge filtration and the cup product polarization on H under the canonical isomorphism. Moreover, we lift C[γ]: H → C to a cochain map Cγ: (AX, KX) → (C, 0), where C[γ] is the Griffiths period integral given by ω → ∫γ ω for [γ] ε Hn-1(XG, Z). We use this enhanced homotopy structure on H to study an extended formal deformation of XG and the correlation of its period integrals. If XG is in a formal family of Calabi-Yau hypersurfaces XGT, we provide an explicit formula and algorithm (based on a Gröbner basis) to compute the period matrix of XGT in terms of the period matrix of XG and an L∞-morphism K which enhances C[γ] and governs deformations of period matrices. | - |
dc.language | 영어 | - |
dc.publisher | INT PRESS BOSTON | - |
dc.title | Enhanced homotopy theory for period integrals of smooth projective hypersurfaces | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000381538900003 | - |
dc.identifier.scopusid | 2-s2.0-84980335301 | - |
dc.identifier.rimsid | 56335 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Jae-Suk Park | - |
dc.identifier.doi | 10.4310/CNTP.2016.v10.n2.a3 | - |
dc.identifier.bibliographicCitation | COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, v.10, no.2, pp.235 - 337 | - |
dc.relation.isPartOf | COMMUNICATIONS IN NUMBER THEORY AND PHYSICS | - |
dc.citation.title | COMMUNICATIONS IN NUMBER THEORY AND PHYSICS | - |
dc.citation.volume | 10 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 235 | - |
dc.citation.endPage | 337 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 3 | - |
dc.description.scptc | 2 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |