Semifree Hamiltonian circle actions on 6-dimensional symplectic manifolds with non-isolated fixed point set
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yunhyung Cho | - |
dc.contributor.author | Hwang T. | - |
dc.contributor.author | Suh D.Y. | - |
dc.date.available | 2016-06-30T06:52:52Z | - |
dc.date.created | 2016-05-17 | - |
dc.date.issued | 2015-12 | - |
dc.identifier.issn | 1527-5256 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/2596 | - |
dc.description.abstract | Let (M; ω) be a 6-dimensional closed symplectic manifold with a symplectic S1-action with MS1 ≠0 ; and dim MS1 ≤ 2. Assume that ω is integral with a generalized moment map μ. We first prove that the action is Hamiltonian if and only if b+ 2 (Mred) = 1, where Mred is any reduced space with respect to μ. It means that if the action is non-Hamiltonian, then b+ 2 (Mred) ≥ 2. Secondly, we focus on the case when the action is semifree and Hamiltonian. We prove that if MS1 consists of surfaces, then the number k of fixed surfaces with positive genera is at most four. In particular, if the extremal fixed surfaces are spheres, then k is at most one. Finally, we prove that k ≠ 2 and we construct some examples of 6-dimensional semifree Hamiltonian S1-manifolds such that MS1 contains k surfaces of positive genera for k = 0 and 4. Examples with k = 1 and 3 were given in [L2]. © 2015, International Press of Boston, Inc. All rights reserved | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | INT PRESS BOSTON | - |
dc.title | Semifree Hamiltonian circle actions on 6-dimensional symplectic manifolds with non-isolated fixed point set | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000374509900005 | - |
dc.identifier.scopusid | 2-s2.0-84962608668 | - |
dc.identifier.rimsid | 55524 | - |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Yunhyung Cho | - |
dc.identifier.doi | 10.4310/JSG.2015.v13.n4.a5 | - |
dc.identifier.bibliographicCitation | JOURNAL OF SYMPLECTIC GEOMETRY, v.13, no.4, pp.963 - 1000 | - |
dc.citation.title | JOURNAL OF SYMPLECTIC GEOMETRY | - |
dc.citation.volume | 13 | - |
dc.citation.number | 4 | - |
dc.citation.startPage | 963 | - |
dc.citation.endPage | 1000 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 1 | - |
dc.description.scptc | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |