Selectively accelerated lithium ion transport to silicon anodes via an organogel binder
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hwang, C | - |
dc.contributor.author | Cho, YG | - |
dc.contributor.author | Kang, NR | - |
dc.contributor.author | Ko, Y | - |
dc.contributor.author | Lee, U | - |
dc.contributor.author | Ahn, D | - |
dc.contributor.author | Ju-Young Kim | - |
dc.contributor.author | Kim, YJ | - |
dc.contributor.author | Song, HK | - |
dc.date.available | 2016-01-25T00:11:18Z | - |
dc.date.created | 2015-11-03 | - |
dc.date.issued | 2015-12 | - |
dc.identifier.issn | 0378-7753 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/2224 | - |
dc.description.abstract | Silicon, a promising high-capacity anode material of lithium ion batteries, suffers from its volume expansion leading to pulverization and low conductivities, showing capacity decay during cycling and low capacities at fast charging and discharging. In addition to popular active-material-modifying strategies, building lithium-ion-rich environments around silicon surface is helpful in enhancing unsatisfactory performances of silicon anodes. In this work, we accelerated lithium ion transport to silicon surface by using an organogel binder to utilize the electroactivity of silicon in a more efficient way. The cyanoethyl polymer (PVA-CN), characterized by high lithium ion transference number as well as appropriate elastic modulus with strong adhesion, enhanced cycle stability of silicon anodes with high coulombic efficiency even at high temperature (60 degrees C) as well as at fast charging/discharging rates. (C) 2015 Elsevier B.V. All rights reserved | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | ELSEVIER SCIENCE BV | - |
dc.subject | Binder | - |
dc.subject | Lithium ion transference number | - |
dc.subject | Organogel | - |
dc.subject | Lithium ion battery | - |
dc.subject | Silicon anode | - |
dc.title | Selectively accelerated lithium ion transport to silicon anodes via an organogel binder | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000362146800002 | - |
dc.identifier.scopusid | 2-s2.0-84939787002 | - |
dc.identifier.rimsid | 21409 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Ju-Young Kim | - |
dc.identifier.doi | 10.1016/j.jpowsour.2015.08.017 | - |
dc.identifier.bibliographicCitation | JOURNAL OF POWER SOURCES, v.298, pp.8 - 13 | - |
dc.citation.title | JOURNAL OF POWER SOURCES | - |
dc.citation.volume | 298 | - |
dc.citation.startPage | 8 | - |
dc.citation.endPage | 13 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 5 | - |
dc.description.scptc | 5 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | FLUOROETHYLENE CARBONATE | - |
dc.subject.keywordPlus | BATTERY ANODES | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | ELECTRODES | - |
dc.subject.keywordAuthor | Binder | - |
dc.subject.keywordAuthor | Lithium ion transference number | - |
dc.subject.keywordAuthor | Organogel | - |
dc.subject.keywordAuthor | Lithium ion battery | - |
dc.subject.keywordAuthor | Silicon anode | - |