On the transfer congruence between p-adic Hecke L-functions
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dohyeong Kim | - |
dc.date.available | 2016-01-07T09:15:58Z | - |
dc.date.created | 2015-11-02 | - |
dc.date.issued | 2015-08 | - |
dc.identifier.issn | 2168-0930 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/2159 | - |
dc.description.abstract | We prove the transfer congruence between p-adic Hecke L-functions for CM fields over cyclotomic extensions, which is a non-abelian generalization of the Kummer’s congruence. The ingredients of the proof include the comparison between Hilbert modular varieties, the q-expansion principle, and some modification of Hsieh’s Whittaker model for Katz’ Eisenstein series. As a first application, we prove explicit congruence between special values of Hasse- Weil L-function of a CM elliptic curve twisted by Artin representations. As a second application, we prove the existence of a non-commutative p-adic L-function in the algebraic K1-group of the completed localized Iwasawa algebra. | - |
dc.language | 영어 | - |
dc.publisher | INT PRESS | - |
dc.title | On the transfer congruence between p-adic Hecke L-functions | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.rimsid | 21531 | ko |
dc.contributor.affiliatedAuthor | Dohyeong Kim | - |
dc.identifier.doi | 10.4310/CJM.2015.v3.n3.a3 | - |
dc.identifier.bibliographicCitation | CAMBRIDGE JOURNAL OF MATHEMATICS, v.3, no.3, pp.355 - 438 | - |
dc.relation.isPartOf | CAMBRIDGE JOURNAL OF MATHEMATICS | - |
dc.citation.title | CAMBRIDGE JOURNAL OF MATHEMATICS | - |
dc.citation.volume | 3 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 355 | - |
dc.citation.endPage | 438 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | other | - |