On an Induced Version of Menger's Theorem
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kevin Hendrey | - |
dc.contributor.author | Norin, Sergey | - |
dc.contributor.author | Steiner, Raphael | - |
dc.contributor.author | Turcotte, Jeremie | - |
dc.date.accessioned | 2025-01-09T02:30:05Z | - |
dc.date.available | 2025-01-09T02:30:05Z | - |
dc.date.created | 2024-12-11 | - |
dc.date.issued | 2024-11 | - |
dc.identifier.issn | 1077-8926 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/16132 | - |
dc.description.abstract | We prove Menger-type results in which the obtained paths are pairwise nonadjacent, both for graphs of bounded maximum degree and, more generally, for graphs excluding a topological minor. More precisely, we show the existence of a constant C, depending only on the maximum degree or on the forbidden topological minor, such that for any pair of sets of vertices X, Y and any positive integer k, there exist either k pairwise non-adjacent X-Y-paths, or a set of fewer than Ck vertices which separates X and Y. We further show better bounds in the sub cubic case, and in particular obtain a tight result for two paths using a computer-assisted proof. | - |
dc.language | 영어 | - |
dc.publisher | Electronic Journal of Combinatorics | - |
dc.title | On an Induced Version of Menger's Theorem | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001353645600001 | - |
dc.identifier.scopusid | 2-s2.0-85209178555 | - |
dc.identifier.rimsid | 84629 | - |
dc.contributor.affiliatedAuthor | Kevin Hendrey | - |
dc.identifier.doi | 10.37236/12575 | - |
dc.identifier.bibliographicCitation | Electronic Journal of Combinatorics, v.31, no.4 | - |
dc.relation.isPartOf | Electronic Journal of Combinatorics | - |
dc.citation.title | Electronic Journal of Combinatorics | - |
dc.citation.volume | 31 | - |
dc.citation.number | 4 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | GRAPHS | - |