Symplectic duality via log topological recursion
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Alexander Alexandrov | - |
dc.contributor.author | Bychkov, Boris | - |
dc.contributor.author | Dunin-Barkowski, Petr | - |
dc.contributor.author | Kazarian, Maxim | - |
dc.contributor.author | Shadrin, Sergey | - |
dc.date.accessioned | 2025-01-07T02:00:00Z | - |
dc.date.available | 2025-01-07T02:00:00Z | - |
dc.date.created | 2024-12-23 | - |
dc.date.issued | 2024-12 | - |
dc.identifier.issn | 1931-4523 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/16087 | - |
dc.description.abstract | We review the notion of symplectic duality earlier introduced in the context of topological recursion. We show that the transformation of symplectic duality can be expressed as a composition of x − y dualities in a broader context of log topological recursion. As a corollary, we establish nice properties of symplectic duality: various convenient explicit formulas, invertibility, group property, compatibility with topological recursion and KP integrability. As an application of these properties, we get a new and uniform proof of topological recursion for large families of weighted double Hurwitz numbers; this encompasses and significantly extends all previously known results on this matter. © 2024, International Press, Inc.. All rights reserved. | - |
dc.language | 영어 | - |
dc.publisher | International Press, Inc. | - |
dc.title | Symplectic duality via log topological recursion | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.scopusid | 2-s2.0-85211498177 | - |
dc.identifier.rimsid | 84740 | - |
dc.contributor.affiliatedAuthor | Alexander Alexandrov | - |
dc.identifier.doi | 10.4310/cntp.241203001416 | - |
dc.identifier.bibliographicCitation | Communications in Number Theory and Physics, v.18, no.4, pp.795 - 841 | - |
dc.relation.isPartOf | Communications in Number Theory and Physics | - |
dc.citation.title | Communications in Number Theory and Physics | - |
dc.citation.volume | 18 | - |
dc.citation.number | 4 | - |
dc.citation.startPage | 795 | - |
dc.citation.endPage | 841 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | Hurwitz numbers | - |
dc.subject.keywordAuthor | Spectral curve topological recursion | - |
dc.subject.keywordAuthor | symplectic duality | - |