Period Integrals of Hypersurfaces via Tropical Geometry
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yuto Yamamoto | - |
dc.date.accessioned | 2024-12-17T05:30:04Z | - |
dc.date.available | 2024-12-17T05:30:04Z | - |
dc.date.created | 2024-06-24 | - |
dc.date.issued | 2024-06 | - |
dc.identifier.issn | 1073-7928 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/15944 | - |
dc.description.abstract | Let $\left \{ Z_{t} \right \}_{t}$ be a one-parameter family of complex hypersurfaces of dimension $d \geq 1$ in a toric variety. We compute asymptotics of period integrals for $\left \{ Z_{t} \right \}_{t}$ by applying the method of Abouzaid-Ganatra-Iritani-Sheridan, which uses tropical geometry. As integrands, we consider Poincar & eacute; residues of meromorphic $(d+1)$ -forms on the ambient toric variety, which have poles along the hypersurface $Z_{t}$ . The cycles over which we integrate them are spheres and tori, which correspond to tropical $(0, d)$ -cycles and $(d, 0)$ -cycles on the tropicalization of $\left \{ Z_{t} \right \}_{t}$ , respectively. In the case of $d=1$ , we explicitly write down the polarized logarithmic Hodge structure of Kato-Usui at the limit as a corollary. Throughout this article, we impose the assumption that the tropicalization is dual to a unimodular triangulation of the Newton polytope. | - |
dc.language | 영어 | - |
dc.publisher | Oxford University Press | - |
dc.title | Period Integrals of Hypersurfaces via Tropical Geometry | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001246098900001 | - |
dc.identifier.scopusid | 2-s2.0-85200897302 | - |
dc.identifier.rimsid | 83331 | - |
dc.contributor.affiliatedAuthor | Yuto Yamamoto | - |
dc.identifier.doi | 10.1093/imrn/rnae123 | - |
dc.identifier.bibliographicCitation | International Mathematics Research Notices, v.2024, no.15, pp.11386 - 11425 | - |
dc.relation.isPartOf | International Mathematics Research Notices | - |
dc.citation.title | International Mathematics Research Notices | - |
dc.citation.volume | 2024 | - |
dc.citation.number | 15 | - |
dc.citation.startPage | 11386 | - |
dc.citation.endPage | 11425 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | MIRROR SYMMETRY | - |
dc.subject.keywordPlus | HODGE STRUCTURE | - |