BROWSE

Related Scientist

Researcher

이주민
나노물질 및 화학반응 연구단
more info

Exciton Dissociation and Charge-Transport Enhancement in Organic Solar Cells with Quantum-Dot/N-doped CNT Hybrid Nanomaterials

Cited 69 time in webofscience Cited 0 time in scopus
409 Viewed 30 Downloaded
Title
Exciton Dissociation and Charge-Transport Enhancement in Organic Solar Cells with Quantum-Dot/N-doped CNT Hybrid Nanomaterials
Author(s)
Ju Min Lee; Kwon, BH; Hyung Il Park; Kim, H; Kim, MG; Park, JS; Kim, ES; Yoo, S; Jeon, DY; Sang Ouk Kim
Publication Date
2013-04
Journal
ADVANCED MATERIALS, v.25, no.14, pp.2011 - 2017
Publisher
WILEY-V C H VERLAG GMBH
Abstract
The incorporation of InP quantum-dot/N-doped multiwalled carbon nanotube (QD:NCNT) nanohybrids in the active layer of poly(3-hexylthiophene)/indene-C-60 bisadduct (P3HT/ICBA) bulk-heterojuction solar cells enhances V-OC and J(SC). The QDs encourage exciton dissociation by promoting electron transfer, while the NCNTs enhance the transport of the separated electrons and eventual charge collection. Such a synergistic effect successfully improves the power conversion efficiency (PCE) from 4.68% (reference cells) to 6.11%.
URI
https://pr.ibs.re.kr/handle/8788114/1594
ISSN
0935-9648
Appears in Collections:
Center for Nanomaterials and Chemical Reactions(나노물질 및 화학반응 연구단) > Journal Papers (저널논문)
Files in This Item:
24_IBS CA1201-2_ADV MATER_25_14_2011_Exciton Dissociation and Charge Transport Enhancement in Organic Solar Cells with Quantum.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse