Finding dense minors using average degree
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kevin Hendrey | - |
dc.contributor.author | Norin, Sergey | - |
dc.contributor.author | Steiner, Raphael | - |
dc.contributor.author | Turcotte, Jeremie | - |
dc.date.accessioned | 2024-12-12T07:39:46Z | - |
dc.date.available | 2024-12-12T07:39:46Z | - |
dc.date.created | 2024-10-07 | - |
dc.date.issued | 2024-01 | - |
dc.identifier.issn | 0364-9024 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/15881 | - |
dc.description.abstract | Motivated by Hadwiger's conjecture, we study theproblem of finding the densest possiblet-vertex minorin graphs of average degree at least t-1. We show thatifGhas average degree at least t-1, it contains a minor on t vertices with at least (root 2-1-(1))t2) edges. We show that this cannot be improved beyond (3/4 )o(1)(t 2)+. Finally, for t <= 6 we exactly determine the number of edges we are guaranteed to find in the densest t-vertex minor in graphs of average degree at least t-1. | - |
dc.language | 영어 | - |
dc.publisher | John Wiley & Sons Inc. | - |
dc.title | Finding dense minors using average degree | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001321433900001 | - |
dc.identifier.scopusid | 2-s2.0-85203995694 | - |
dc.identifier.rimsid | 84190 | - |
dc.contributor.affiliatedAuthor | Kevin Hendrey | - |
dc.identifier.doi | 10.1002/jgt.23169 | - |
dc.identifier.bibliographicCitation | Journal of Graph Theory, v.108, no.1, pp.205 - 223 | - |
dc.relation.isPartOf | Journal of Graph Theory | - |
dc.citation.title | Journal of Graph Theory | - |
dc.citation.volume | 108 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 205 | - |
dc.citation.endPage | 223 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordAuthor | Hadwiger&apos | - |
dc.subject.keywordAuthor | s conjecture | - |
dc.subject.keywordAuthor | average degree | - |
dc.subject.keywordAuthor | graph minors | - |