New bounds on diffsequences
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Alexander Clifton | - |
dc.date.accessioned | 2024-12-12T07:38:27Z | - |
dc.date.available | 2024-12-12T07:38:27Z | - |
dc.date.created | 2024-03-05 | - |
dc.date.issued | 2024-05 | - |
dc.identifier.issn | 0012-365X | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/15858 | - |
dc.description.abstract | For a set of positive integers D, a k-term D-diffsequence is a sequence of positive integers a1<a2<…<ak such that ai−ai−1∈D for i=2,3,…,k. For k∈Z+ and D⊂Z+, we define Δ(D,k), if it exists, to be the smallest integer n such that every 2-coloring of {1,2,…,n} contains a monochromatic D-diffsequence of length k. We improve the lower bound on Δ(D,k) where D={2i|i∈Z≥0}, proving a conjecture of Chokshi, Clifton, Landman, and Sawin. We also determine all sets D={d1,d2,…} satisfying ∀i∈Z+,di|di+1 for which Δ(D,k) exists for all k∈Z+. © 2024 Elsevier B.V. | - |
dc.language | 영어 | - |
dc.publisher | Elsevier BV | - |
dc.title | New bounds on diffsequences | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001202237400001 | - |
dc.identifier.scopusid | 2-s2.0-85185571720 | - |
dc.identifier.rimsid | 82636 | - |
dc.contributor.affiliatedAuthor | Alexander Clifton | - |
dc.identifier.doi | 10.1016/j.disc.2024.113929 | - |
dc.identifier.bibliographicCitation | Discrete Mathematics, v.347, no.5 | - |
dc.relation.isPartOf | Discrete Mathematics | - |
dc.citation.title | Discrete Mathematics | - |
dc.citation.volume | 347 | - |
dc.citation.number | 5 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordAuthor | Ramsey theory | - |
dc.subject.keywordAuthor | Thue–Morse sequence | - |
dc.subject.keywordAuthor | Beatty sequence | - |