Interplay of valley, layer and band topology towards interacting quantum phases in moiré bilayer graphene
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yungi Jeong | - |
dc.contributor.author | Hangyeol Park | - |
dc.contributor.author | Kim, Taeho | - |
dc.contributor.author | Watanabe, Kenji | - |
dc.contributor.author | Taniguchi, Takashi | - |
dc.contributor.author | Jung, Jeil | - |
dc.contributor.author | Joonho Jang | - |
dc.date.accessioned | 2024-12-12T07:32:56Z | - |
dc.date.available | 2024-12-12T07:32:56Z | - |
dc.date.created | 2024-08-05 | - |
dc.date.issued | 2024-07 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/15767 | - |
dc.description.abstract | In Bernal-stacked bilayer graphene (BBG), the Landau levels give rise to an intimate connection between valley and layer degrees of freedom. Adding a moiré superlattice potential enriches the BBG physics with the formation of topological minibands — potentially leading to tunable exotic quantum transport. Here, we present magnetotransport measurements of a high-quality bilayer graphene–hexagonal boron nitride (hBN) heterostructure. The zero-degree alignment generates a strong moiré superlattice potential for the electrons in BBG and the resulting Landau fan diagram of longitudinal and Hall resistance displays a Hofstadter butterfly pattern with a high level of detail. We demonstrate that the intricate relationship between valley and layer degrees of freedom controls the topology of moiré-induced bands, significantly influencing the energetics of interacting quantum phases in the BBG superlattice. We further observe signatures of field-induced correlated insulators, helical edge states and clear quantizations of interaction-driven topological quantum phases, such as symmetry broken Chern insulators. © The Author(s) 2024. | - |
dc.language | 영어 | - |
dc.publisher | Nature Publishing Group | - |
dc.title | Interplay of valley, layer and band topology towards interacting quantum phases in moiré bilayer graphene | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001279365300001 | - |
dc.identifier.scopusid | 2-s2.0-85199936691 | - |
dc.identifier.rimsid | 83740 | - |
dc.contributor.affiliatedAuthor | Yungi Jeong | - |
dc.contributor.affiliatedAuthor | Hangyeol Park | - |
dc.contributor.affiliatedAuthor | Joonho Jang | - |
dc.identifier.doi | 10.1038/s41467-024-50475-x | - |
dc.identifier.bibliographicCitation | Nature Communications, v.15, no.1 | - |
dc.relation.isPartOf | Nature Communications | - |
dc.citation.title | Nature Communications | - |
dc.citation.volume | 15 | - |
dc.citation.number | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Multidisciplinary Sciences | - |
dc.subject.keywordPlus | BLOCH ELECTRONS | - |
dc.subject.keywordPlus | STATES | - |
dc.subject.keywordPlus | SPECTROSCOPY | - |