BROWSE

Related Scientist

caldes's photo.

caldes
원자제어저차원전자계연구단
more info

ITEM VIEW & DOWNLOAD

Quantum-Confined Lifshitz Transition on Weyl Semimetal Td‑MoTe2

DC Field Value Language
dc.contributor.authorHyunjin Jung-
dc.contributor.authorKyung-Hwan Jin-
dc.contributor.authorMinki Sung-
dc.contributor.authorJimin Kim-
dc.contributor.authorJaeyoung Kim-
dc.contributor.authorHan Woong Yeom-
dc.date.accessioned2024-12-12T07:16:03Z-
dc.date.available2024-12-12T07:16:03Z-
dc.date.created2024-08-26-
dc.date.issued2024-08-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/15727-
dc.description.abstractAdsorption of alkali atoms onto material surfaces is widely utilized for controlling electronic properties and is particularly effective for two-dimensional materials. While tuning the chemical potential and band gap and creating quantum-confined states are well established for alkali adsorption on semiconductors, the effects on semimetallic systems remain largely elusive. Here, utilizing angle-resolved photoemission spectroscopy measurements and density functional theory calculations, we disclose the creation of two-dimensional electron gas and the quantum-confined Lifshitz transition at the surface of a Weyl semimetal T d-MoTe2 by potassium adsorption. Electrons from potassium adatoms are shown to be transferred mainly to the lowest unoccupied band within the gapped part of the Brillouin zone, which, in turn, induces strong surface band bending and quantum confinement in the topmost layer. The quantum-confined topmost layer evolves from a semimetal to a strong metal with a Lifshitz transition departing substantially from the bulk band. The present finding and its underlying mechanism can be exploited for the creation of electronic heterojunctions in van der Waals semimetals.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleQuantum-Confined Lifshitz Transition on Weyl Semimetal Td‑MoTe2-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid001293281400001-
dc.identifier.scopusid2-s2.0-85202211163-
dc.identifier.rimsid83894-
dc.contributor.affiliatedAuthorHyunjin Jung-
dc.contributor.affiliatedAuthorKyung-Hwan Jin-
dc.contributor.affiliatedAuthorMinki Sung-
dc.contributor.affiliatedAuthorJimin Kim-
dc.contributor.affiliatedAuthorJaeyoung Kim-
dc.contributor.affiliatedAuthorHan Woong Yeom-
dc.identifier.doi10.1021/acsnano.4c05726-
dc.identifier.bibliographicCitationACS Nano, v.18, no.34, pp.23189 - 23195-
dc.relation.isPartOfACS Nano-
dc.citation.titleACS Nano-
dc.citation.volume18-
dc.citation.number34-
dc.citation.startPage23189-
dc.citation.endPage23195-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusBAND-GAP-
dc.subject.keywordPlusMETAL-
dc.subject.keywordAuthorquantum confinement-
dc.subject.keywordAuthorLifshitz transition-
dc.subject.keywordAuthorvander Waals material-
dc.subject.keywordAuthorangle-resolve photoemission spectroscopy-
dc.subject.keywordAuthordensity functional theory-
Appears in Collections:
Center for Artificial Low Dimensional Electronic Systems(원자제어 저차원 전자계 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse