BROWSE

Related Scientist

semin,yoo's photo.

semin,yoo
이산수학그룹
more info

ITEM VIEW & DOWNLOAD

Explicit constructions of Diophantine tuples over finite fields

DC Field Value Language
dc.contributor.authorKim, Seoyoung-
dc.contributor.authorYip, Chi Hoi-
dc.contributor.authorSemin Yoo-
dc.date.accessioned2024-12-12T07:12:58Z-
dc.date.available2024-12-12T07:12:58Z-
dc.date.created2024-07-15-
dc.date.issued2024-09-
dc.identifier.issn1382-4090-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/15692-
dc.description.abstractA Diophantine m-tuple over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_q$$\end{document} is a set {a1,& mldr;,am}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{a_1,\ldots , a_m\}$$\end{document} of m distinct elements in Fq & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q}<^>{*}$$\end{document} such that aiaj+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{i}a_{j}+1$$\end{document} is a square in Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_q$$\end{document} whenever i not equal j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\ne j$$\end{document}. In this paper, we study M(q), the maximum size of a Diophantine tuple over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_q$$\end{document}, assuming the characteristic of Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_q$$\end{document} is fixed and q ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \rightarrow \infty $$\end{document}. By explicit constructions, we improve the lower bound on M(q). In particular, this improves a recent result of Dujella and Kazalicki by a multiplicative factor.-
dc.language영어-
dc.publisherKluwer Academic Publishers-
dc.titleExplicit constructions of Diophantine tuples over finite fields-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid001259384600001-
dc.identifier.scopusid2-s2.0-85197311900-
dc.identifier.rimsid83545-
dc.contributor.affiliatedAuthorSemin Yoo-
dc.identifier.doi10.1007/s11139-024-00888-5-
dc.identifier.bibliographicCitationRamanujan Journal, v.65, pp.163 - 172-
dc.relation.isPartOfRamanujan Journal-
dc.citation.titleRamanujan Journal-
dc.citation.volume65-
dc.citation.startPage163-
dc.citation.endPage172-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordAuthorDiophantine tuples-
dc.subject.keywordAuthorCharacter sum-
dc.subject.keywordAuthorCyclotomic polynomial-
Appears in Collections:
Pioneer Research Center for Mathematical and Computational Sciences(수리 및 계산과학 연구단) > Discrete Mathematics Group(이산 수학 그룹) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse