BROWSE

Related Scientist

grzybowski,bartoszandrzej's photo.

grzybowski,bartoszandrzej
인공지능및로봇기반합성연구단
more info

ITEM VIEW & DOWNLOAD

Machine Learning Algorithm Guides Catalyst Choices for Magnesium-Catalyzed Asymmetric Reactions

DC Field Value Language
dc.contributor.authorBaczewska, Paulina-
dc.contributor.authorKulczykowski, Michał-
dc.contributor.authorZambroń, Bartosz-
dc.contributor.authorJaszczewska-Adamczak, Joanna-
dc.contributor.authorPakulski, Zbigniew-
dc.contributor.authorRoszak, Rafał-
dc.contributor.authorBartosz A. Grzybowski-
dc.contributor.authorMlynarski, Jacek-
dc.date.accessioned2024-12-12T07:11:33Z-
dc.date.available2024-12-12T07:11:33Z-
dc.date.created2024-08-26-
dc.date.issued2024-09-
dc.identifier.issn1433-7851-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/15680-
dc.description.abstractOrganic-chemical literature encompasses large numbers of catalysts and reactions they can effect. Many of these examples are published merely to document the catalysts’ scope but do not necessarily guarantee that a given catalyst is “optimal”—in terms of yield or enantiomeric excess—for a particular reaction. This paper describes a Machine Learning model that aims to improve such catalyst-reaction assignments based on the carefully curated literature data. As we show here for the case of asymmetric magnesium catalysis, this model achieves relatively high accuracy and offers out of-the-box predictions successfully validated by experiment, e.g., in synthetically demanding asymmetric reductions or Michael additions. © 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.-
dc.language영어-
dc.publisherJohn Wiley & Sons Ltd.-
dc.titleMachine Learning Algorithm Guides Catalyst Choices for Magnesium-Catalyzed Asymmetric Reactions-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid001288490900001-
dc.identifier.scopusid2-s2.0-85200985552-
dc.identifier.rimsid83879-
dc.contributor.affiliatedAuthorBartosz A. Grzybowski-
dc.identifier.doi10.1002/anie.202318487-
dc.identifier.bibliographicCitationAngewandte Chemie International Edition, v.63, no.37-
dc.relation.isPartOfAngewandte Chemie International Edition-
dc.citation.titleAngewandte Chemie International Edition-
dc.citation.volume63-
dc.citation.number37-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordAuthorAsymmetric catalysis-
dc.subject.keywordAuthorMachine Learning-
dc.subject.keywordAuthorMagnesium-
dc.subject.keywordAuthorNeural networks-
Appears in Collections:
Center for Soft and Living Matter(첨단연성물질 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse