Machine Learning Algorithm Guides Catalyst Choices for Magnesium-Catalyzed Asymmetric Reactions
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Baczewska, Paulina | - |
dc.contributor.author | Kulczykowski, Michał | - |
dc.contributor.author | Zambroń, Bartosz | - |
dc.contributor.author | Jaszczewska-Adamczak, Joanna | - |
dc.contributor.author | Pakulski, Zbigniew | - |
dc.contributor.author | Roszak, Rafał | - |
dc.contributor.author | Bartosz A. Grzybowski | - |
dc.contributor.author | Mlynarski, Jacek | - |
dc.date.accessioned | 2024-12-12T07:11:33Z | - |
dc.date.available | 2024-12-12T07:11:33Z | - |
dc.date.created | 2024-08-26 | - |
dc.date.issued | 2024-09 | - |
dc.identifier.issn | 1433-7851 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/15680 | - |
dc.description.abstract | Organic-chemical literature encompasses large numbers of catalysts and reactions they can effect. Many of these examples are published merely to document the catalysts’ scope but do not necessarily guarantee that a given catalyst is “optimal”—in terms of yield or enantiomeric excess—for a particular reaction. This paper describes a Machine Learning model that aims to improve such catalyst-reaction assignments based on the carefully curated literature data. As we show here for the case of asymmetric magnesium catalysis, this model achieves relatively high accuracy and offers out of-the-box predictions successfully validated by experiment, e.g., in synthetically demanding asymmetric reductions or Michael additions. © 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. | - |
dc.language | 영어 | - |
dc.publisher | John Wiley & Sons Ltd. | - |
dc.title | Machine Learning Algorithm Guides Catalyst Choices for Magnesium-Catalyzed Asymmetric Reactions | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001288490900001 | - |
dc.identifier.scopusid | 2-s2.0-85200985552 | - |
dc.identifier.rimsid | 83879 | - |
dc.contributor.affiliatedAuthor | Bartosz A. Grzybowski | - |
dc.identifier.doi | 10.1002/anie.202318487 | - |
dc.identifier.bibliographicCitation | Angewandte Chemie International Edition, v.63, no.37 | - |
dc.relation.isPartOf | Angewandte Chemie International Edition | - |
dc.citation.title | Angewandte Chemie International Edition | - |
dc.citation.volume | 63 | - |
dc.citation.number | 37 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | Asymmetric catalysis | - |
dc.subject.keywordAuthor | Machine Learning | - |
dc.subject.keywordAuthor | Magnesium | - |
dc.subject.keywordAuthor | Neural networks | - |