BROWSE

Related Scientist

dongkyum,kim's photo.

dongkyum,kim
데이터사이언스그룹
more info

ITEM VIEW & DOWNLOAD

SUBTLE: An Unsupervised Platform with Temporal Link Embedding that Maps Animal Behavior

DC Field Value Language
dc.contributor.authorJea Kwon-
dc.contributor.authorSunpil Kim-
dc.contributor.authorDong-Kyum Kim-
dc.contributor.authorJinhyeong Joo-
dc.contributor.authorSoHyung Kim-
dc.contributor.authorMeeyoung Cha-
dc.contributor.authorC. Justin Lee-
dc.date.accessioned2024-12-12T07:06:32Z-
dc.date.available2024-12-12T07:06:32Z-
dc.date.created2024-06-03-
dc.date.issued2024-10-
dc.identifier.issn0920-5691-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/15623-
dc.description.abstractWhile huge strides have recently been made in language-based machine learning, the ability of artificial systems to comprehend the sequences that comprise animal behavior has been lagging behind. In contrast, humans instinctively recognize behaviors by finding similarities in behavioral sequences. Here, we develop an unsupervised behavior-mapping framework, SUBTLE (spectrogram-UMAP-based temporal-link embedding), to capture comparable behavioral repertoires from 3D action skeletons. To find the best embedding method, we devise a temporal proximity index (TPI) as a new metric to gauge temporal representation in the behavioral embedding space. The method achieves the best TPI score compared to current embedding strategies. Its spectrogram-based UMAP clustering not only identifies subtle inter-group differences but also matches human-annotated labels. SUBTLE framework automates the tasks of both identifying behavioral repertoires like walking, grooming, standing, and rearing, and profiling individual behavior signatures like subtle inter-group differences by age. SUBTLE highlights the importance of temporal representation in the behavioral embedding space for human-like behavioral categorization. © The Author(s) 2024.-
dc.language영어-
dc.publisherKluwer Academic Publishers-
dc.titleSUBTLE: An Unsupervised Platform with Temporal Link Embedding that Maps Animal Behavior-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid001228250200002-
dc.identifier.scopusid2-s2.0-85193615144-
dc.identifier.rimsid83146-
dc.contributor.affiliatedAuthorJea Kwon-
dc.contributor.affiliatedAuthorSunpil Kim-
dc.contributor.affiliatedAuthorDong-Kyum Kim-
dc.contributor.affiliatedAuthorJinhyeong Joo-
dc.contributor.affiliatedAuthorSoHyung Kim-
dc.contributor.affiliatedAuthorMeeyoung Cha-
dc.contributor.affiliatedAuthorC. Justin Lee-
dc.identifier.doi10.1007/s11263-024-02072-0-
dc.identifier.bibliographicCitationInternational Journal of Computer Vision, v.132, pp.4589 - 4615-
dc.relation.isPartOfInternational Journal of Computer Vision-
dc.citation.titleInternational Journal of Computer Vision-
dc.citation.volume132-
dc.citation.startPage4589-
dc.citation.endPage4615-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.subject.keywordPlusREPRESENTATION-
dc.subject.keywordPlusSEQUENCES-
dc.subject.keywordPlusREVEALS-
dc.subject.keywordPlusPOSE ESTIMATION-
dc.subject.keywordAuthorSpectrogram-UMAP-
dc.subject.keywordAuthorTemporal proximity index-
dc.subject.keywordAuthorUnsupervised behavior mapping-
dc.subject.keywordAuthorBehavior embedding space-
Appears in Collections:
Pioneer Research Center for Mathematical and Computational Sciences(수리 및 계산과학 연구단) > Data Science Group(데이터 사이언스 그룹) > 1. Journal Papers (저널논문)
Center for Cognition and Sociality(인지 및 사회성 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse