Highly efficient inverted polymer light-emitting diodes using surface modifications of ZnO layer
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, BR | - |
dc.contributor.author | Jung, ED | - |
dc.contributor.author | Park, JS | - |
dc.contributor.author | Nam, YS | - |
dc.contributor.author | Min, SH | - |
dc.contributor.author | Kim, BS | - |
dc.contributor.author | Lee, KM | - |
dc.contributor.author | Jeong, JR | - |
dc.contributor.author | Friend, RH | - |
dc.contributor.author | Kim, JS | - |
dc.contributor.author | Sang Ouk Kim | - |
dc.contributor.author | Song, MH | - |
dc.date.available | 2015-04-21T09:29:29Z | - |
dc.date.created | 2014-11-12 | ko |
dc.date.issued | 2014-09 | - |
dc.identifier.issn | 2041-1723 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/1550 | - |
dc.description.abstract | Organic light-emitting diodes have been recently focused for flexible display and solid-state lighting applications and so much effort has been devoted to achieve highly efficient organic light-emitting diodes. Here, we improve the efficiency of inverted polymer light-emitting diodes by introducing a spontaneously formed ripple-shaped nanostructure of ZnO and applying an amine-based polar solvent treatment to the nanostructure of ZnO. The nanostructure of the ZnO layer improves the extraction of the waveguide modes inside the device structure, and a 2-MEþEA interlayer enhances the electron injection and hole blocking in addition to reducing exciton quenching between the polar-solvent-treated ZnO and the emissive layer. Therefore, our optimized inverted polymer light-emitting diodes have a luminous efficiency of 61.6 cd A1 and an external quantum efficiency of 17.8%, which are the highest efficiency values among polymer-based fluorescent light-emitting diodes that contain a single emissive layer. | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | NATURE PUBLISHING GROUP | - |
dc.title | Highly efficient inverted polymer light-emitting diodes using surface modifications of ZnO layer | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000342983000005 | - |
dc.identifier.scopusid | 2-s2.0-84923363483 | - |
dc.identifier.rimsid | 16379 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Sang Ouk Kim | - |
dc.identifier.doi | 10.1038/ncomms5840 | - |
dc.identifier.bibliographicCitation | NATURE COMMUNICATIONS, v.5, pp.4840 | - |
dc.citation.title | NATURE COMMUNICATIONS | - |
dc.citation.volume | 5 | - |
dc.citation.startPage | 4840 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 54 | - |
dc.description.scptc | 57 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | STABLE METAL-OXIDES | - |
dc.subject.keywordPlus | CONJUGATED POLYMERS | - |
dc.subject.keywordPlus | SOLAR-CELLS | - |
dc.subject.keywordPlus | DEVICES | - |
dc.subject.keywordPlus | EXTRACTION | - |
dc.subject.keywordPlus | BLENDS | - |
dc.subject.keywordPlus | OUTPUT | - |