BROWSE

Related Scientist

kamada,ayuki's photo.

kamada,ayuki
순수물리이론연구단
more info

ITEM VIEW & DOWNLOAD

Modeling the core-halo mass relation in fuzzy dark matter halos

Cited 0 time in webofscience Cited 0 time in scopus
55 Viewed 0 Downloaded
Title
Modeling the core-halo mass relation in fuzzy dark matter halos
Author(s)
Kawai, Hiroki; Kamada, Ayuki; Kamada, Kohei; Yoshida, Naoki
Publication Date
2024-07
Journal
Physical Review D, v.110, no.2
Publisher
AMER PHYSICAL SOC
Abstract
Fuzzy dark matter (FDM) is an intriguing candidate alternative to the standard cold dark matter (CDM). The FDM model predicts that dark halos have characteristic core structures generated by the effect of quantum pressure, which is different from the structure of CDM halos. We devise a semianalytic model of an FDM halo density profile by assuming that the density distribution results from the redistribution of mass in a halo with the Navarro-Frenk-White profile. We calculate the mass redistribution radius by considering dynamical relaxation within the FDM halo. We adopt a concentration-halo mass relation with lower concentration compared to that in the CDM model below the half mode mass, which originates from the suppressed matter density fluctuations at small length scales. Our model reproduces the core-halo mass relation (CHMR) found in the numerical simulation of Schive et al. [Nat. Phys. 10, 496 (2014).] at z < 1. We show that the CHMR is well described by a double power law, unlike previous studies that approximate it by a single power law. Our model predictions are in reasonable agreement with the results of the largest FDM simulation of May and Springel [Mon. Not. R. Astron. Soc. 506, 2603 (2021).] at z = 3. We find that the core mass for a given halo mass follows the log-normal distribution, both in our model and in the simulation results for the first time, and quantitatively compare the variance of the distribution among them. Although our model does not fully explain the scatter of the CHMR, we show the scatter of the concentration-halo mass relation sizably contributes to them.
URI
https://pr.ibs.re.kr/handle/8788114/15467
DOI
10.1103/PhysRevD.110.023519
ISSN
2470-0010
Appears in Collections:
Center for Fundamental Theory(순수물리이론 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse