Contact instantons with Legendrian boundary condition: A priori estimates, asymptotic convergence and index formula
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yong-Geun Oh | - |
dc.contributor.author | Seungook Yu | - |
dc.date.accessioned | 2024-07-11T02:30:03Z | - |
dc.date.available | 2024-07-11T02:30:03Z | - |
dc.date.created | 2024-06-03 | - |
dc.date.issued | 2024-05 | - |
dc.identifier.issn | 0129-167X | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/15320 | - |
dc.description.abstract | In this paper, we establish nonlinear ellipticity of the equation of contact instantons with Legendrian boundary condition on punctured Riemann surfaces by proving the a priori elliptic coercive estimates for the contact instantons with Legendrian boundary condition, and prove an asymptotic exponential C infinity-convergence result at a puncture under the uniform C1 bound. We prove that the asymptotic charge of contact instantons at the punctures under the Legendrian boundary condition vanishes. This eliminates the phenomenon of the appearance of spiraling cusp instanton along a Reeb core, which removes the only remaining obstacle towards the compactification and the Fredholm theory of the moduli space of contact instantons in the open string case, which plagues the closed string case. Leaving the study of C1-estimates and details of Gromov-Floer-Hofer style compactification of contact instantons to [27], we also derive an index formula which computes the virtual dimension of the moduli space. These results are the analytic basis for the sequels [27]-[29] and [36] containing applications to contact topology and contact Hamiltonian dynamics. | - |
dc.language | 영어 | - |
dc.publisher | World Scientific Publishing Co | - |
dc.title | Contact instantons with Legendrian boundary condition: <i>A priori</i> estimates, asymptotic convergence and index formula | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001219342800001 | - |
dc.identifier.scopusid | 2-s2.0-85193641114 | - |
dc.identifier.rimsid | 83216 | - |
dc.contributor.affiliatedAuthor | Yong-Geun Oh | - |
dc.contributor.affiliatedAuthor | Seungook Yu | - |
dc.identifier.doi | 10.1142/S0129167X24500198 | - |
dc.identifier.bibliographicCitation | International Journal of Mathematics, v.35, no.7 | - |
dc.relation.isPartOf | International Journal of Mathematics | - |
dc.citation.title | International Journal of Mathematics | - |
dc.citation.volume | 35 | - |
dc.citation.number | 7 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | SYMPLECTIC TOPOLOGY | - |
dc.subject.keywordPlus | SUBMANIFOLDS | - |
dc.subject.keywordPlus | HOMOLOGY | - |
dc.subject.keywordPlus | GEOMETRY | - |
dc.subject.keywordAuthor | Contact manifolds | - |
dc.subject.keywordAuthor | Legendrian submanifolds | - |
dc.subject.keywordAuthor | contact instantons | - |
dc.subject.keywordAuthor | iso-speed Reeb chords | - |
dc.subject.keywordAuthor | asymptotic contact charge | - |
dc.subject.keywordAuthor | contact triad connection | - |
dc.subject.keywordAuthor | graded bridged Legendrian links | - |
dc.subject.keywordAuthor | Maslov index of bundle pair | - |