BROWSE

Related Scientist

campbell,rutger's photo.

campbell,rutger
이산수학그룹
more info

ITEM VIEW & DOWNLOAD

Product structure of graph classes with bounded treewidth

DC Field Value Language
dc.contributor.authorRutger Campbell-
dc.contributor.authorClinch, Katie-
dc.contributor.authorDistel, Marc-
dc.contributor.authorJ. Pascal Gollin-
dc.contributor.authorKevin Hendrey-
dc.contributor.authorHickingbotham, Robert-
dc.contributor.authorHuynh, Tony-
dc.contributor.authorIllingworth, Freddie-
dc.contributor.authorTamitegama, Youri-
dc.contributor.authorTan, Jane-
dc.contributor.authorWood, David R.-
dc.date.accessioned2024-04-12T01:50:03Z-
dc.date.available2024-04-12T01:50:03Z-
dc.date.created2023-12-26-
dc.date.issued2024-05-
dc.identifier.issn0963-5483-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/15036-
dc.description.abstractWe show that many graphs with bounded treewidth can be described as subgraphs of the strong product of a graph with smaller treewidth and a bounded-size complete graph. To this end, define the underlying treewidth of a graph class $\mathcal{G}$ to be the minimum non-negative integer $c$ such that, for some function $f$, for every graph $G \in \mathcal{G}$ there is a graph $H$ with $\textrm{tw}(H) \leqslant c$ such that $G$ is isomorphic to a subgraph of $H \boxtimes K_{f(\textrm{tw}(G))}$. We introduce disjointed coverings of graphs and show they determine the underlying treewidth of any graph class. Using this result, we prove that the class of planar graphs has underlying treewidth $3$; the class of $K_{s,t}$-minor-free graphs has underlying treewidth $s$ (for $t \geqslant \max \{s,3\}$); and the class of $K_t$-minor-free graphs has underlying treewidth $t-2$. In general, we prove that a monotone class has bounded underlying treewidth if and only if it excludes some fixed topological minor. We also study the underlying treewidth of graph classes defined by an excluded subgraph or excluded induced subgraph. We show that the class of graphs with no $H$ subgraph has bounded underlying treewidth if and only if every component of $H$ is a subdivided star, and that the class of graphs with no induced $H$ subgraph has bounded underlying treewidth if and only if every component of $H$ is a star.-
dc.language영어-
dc.publisherCAMBRIDGE UNIV PRESS-
dc.titleProduct structure of graph classes with bounded treewidth-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid001114381600001-
dc.identifier.scopusid2-s2.0-85180592113-
dc.identifier.rimsid82289-
dc.contributor.affiliatedAuthorRutger Campbell-
dc.contributor.affiliatedAuthorJ. Pascal Gollin-
dc.contributor.affiliatedAuthorKevin Hendrey-
dc.identifier.doi10.1017/S0963548323000457-
dc.identifier.bibliographicCitationCOMBINATORICS PROBABILITY & COMPUTING, v.33, no.3, pp.351 - 376-
dc.relation.isPartOfCOMBINATORICS PROBABILITY & COMPUTING-
dc.citation.titleCOMBINATORICS PROBABILITY & COMPUTING-
dc.citation.volume33-
dc.citation.number3-
dc.citation.startPage351-
dc.citation.endPage376-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.relation.journalWebOfScienceCategoryStatistics & Probability-
dc.subject.keywordPlusFINDING UNIFORM EMULATIONS-
dc.subject.keywordPlusTREE-WIDTH-
dc.subject.keywordPlusEXTREMAL FUNCTION-
dc.subject.keywordPlusPARTITIONS-
dc.subject.keywordPlusMINORS-
dc.subject.keywordPlusCOMPLEXITY-
dc.subject.keywordPlusDRAWINGS-
dc.subject.keywordPlusNUMBER-
dc.subject.keywordPlusERDOS-
dc.subject.keywordAuthortreewidth-
dc.subject.keywordAuthorproduct structure-
dc.subject.keywordAuthorMinors-
Appears in Collections:
Pioneer Research Center for Mathematical and Computational Sciences(수리 및 계산과학 연구단) > Discrete Mathematics Group(이산 수학 그룹) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse