Implementing electronic signatures of graphene and hexagonal boron nitride in twisted bilayer molybdenum disulfide
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Florian M. Arnold | - |
dc.contributor.author | Alireza Ghasemifard | - |
dc.contributor.author | Agnieszka Kuc | - |
dc.contributor.author | Thomas Heine | - |
dc.date.accessioned | 2024-04-11T10:30:54Z | - |
dc.date.available | 2024-04-11T10:30:54Z | - |
dc.date.created | 2024-03-25 | - |
dc.date.issued | 2024-03 | - |
dc.identifier.issn | 1369-7021 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/15030 | - |
dc.description.abstract | Angeli and MacDonald reported a superlattice-imposed Dirac band in twisted bilayer molybdenum disulphide (tBL MoS2) for small twist angles towards the RhM (parallel) stacking. Using a hierarchical set of theoretical methods, we show that the superlattices differ for twist angles with respect to metastable RhM (0°) and lowest-energy Hhh (60°) configurations. When approaching RhM stacking, identical domains with opposite spatial orientation emerge. They form a honeycomb superlattice, yielding Dirac bands and a lateral spin texture distribution with opposite-spin-occupied K and K’ valleys. Small twist angles towards the Hhh configuration (60°) generate Hhh and HhX stacking domains of different relative energies and, hence, different spatial extensions. This imposes a symmetry break in the moiré cell, which opens a gap between the two top-valence bands, which become flat already for relatively small moiré cells. The superlattices impose electronic superstructures resembling graphene and hexagonal boron nitride into trivial semiconductor MoS2. | - |
dc.language | 영어 | - |
dc.publisher | Elsevier BV | - |
dc.title | Implementing electronic signatures of graphene and hexagonal boron nitride in twisted bilayer molybdenum disulfide | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001220523000002 | - |
dc.identifier.scopusid | 2-s2.0-85187509715 | - |
dc.identifier.rimsid | 82799 | - |
dc.contributor.affiliatedAuthor | Thomas Heine | - |
dc.identifier.doi | 10.1016/j.mattod.2024.01.012 | - |
dc.identifier.bibliographicCitation | Materials Today, v.73, pp.96 - 104 | - |
dc.relation.isPartOf | Materials Today | - |
dc.citation.title | Materials Today | - |
dc.citation.volume | 73 | - |
dc.citation.startPage | 96 | - |
dc.citation.endPage | 104 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | MoS2 bilayer | - |
dc.subject.keywordAuthor | Flat bands | - |
dc.subject.keywordAuthor | Moiré patterns | - |
dc.subject.keywordAuthor | Superlattice | - |
dc.subject.keywordAuthor | DFTB, ReaxFF | - |
dc.subject.keywordAuthor | Dirac points | - |
dc.subject.keywordAuthor | Domain reconstruction | - |