BROWSE

Related Scientist

cn's photo.

cn
나노의학연구단
more info

ITEM VIEW & DOWNLOAD

Deep learning models to predict the editing efficiencies and outcomes of diverse base editors

DC Field Value Language
dc.contributor.authorNahye Kim-
dc.contributor.authorSungchul Choi-
dc.contributor.authorSungjae Kim-
dc.contributor.authorMyungjae Song-
dc.contributor.authorJung Hwa Seo-
dc.contributor.authorSeonwoo Min-
dc.contributor.authorJinman Park-
dc.contributor.authorSung-Rae Cho-
dc.contributor.authorHyongbum Henry Kim-
dc.date.accessioned2024-03-20T22:01:55Z-
dc.date.available2024-03-20T22:01:55Z-
dc.date.created2023-05-30-
dc.date.issued2024-03-
dc.identifier.issn1087-0156-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/14932-
dc.description.abstractApplications of base editing are frequently restricted by the requirement for a protospacer adjacent motif (PAM), and selecting the optimal base editor (BE) and single-guide RNA pair (sgRNA) for a given target can be difficult. To select for BEs and sgRNAs without extensive experimental work, we systematically compared the editing windows, outcomes and preferred motifs for seven BEs, including two cytosine BEs, two adenine BEs and three C•G to G•C BEs at thousands of target sequences. We also evaluated nine Cas9 variants that recognize different PAM sequences and developed a deep learning model, DeepCas9variants, for predicting which variants function most efficiently at sites with a given target sequence. We then develop a computational model, DeepBE, that predicts editing efficiencies and outcomes of 63 BEs that were generated by incorporating nine Cas9 variants as nickase domains into the seven BE variants. The predicted median efficiencies of BEs with DeepBE-based design were 2.9- to 20-fold higher than those of rationally designed SpCas9-containing BEs. © 2023, The Author(s), under exclusive licence to Springer Nature America, Inc.-
dc.language영어-
dc.publisherNature Research-
dc.titleDeep learning models to predict the editing efficiencies and outcomes of diverse base editors-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000989706100001-
dc.identifier.scopusid2-s2.0-85159369582-
dc.identifier.rimsid80862-
dc.contributor.affiliatedAuthorHyongbum Henry Kim-
dc.identifier.doi10.1038/s41587-023-01792-x-
dc.identifier.bibliographicCitationNature Biotechnology, v.42, pp.484 - 497-
dc.relation.isPartOfNature Biotechnology-
dc.citation.titleNature Biotechnology-
dc.citation.volume42-
dc.citation.startPage484-
dc.citation.endPage497-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.subject.keywordPlusCRISPR-CAS9 NUCLEASES-
dc.subject.keywordPlusGENOMIC DNA-
dc.subject.keywordPlusVARIANTS-
dc.subject.keywordPlusPCSK9-
Appears in Collections:
Center for Nanomedicine (나노의학 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse