Quantum geometry and Landau levels of quadratic band crossings
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Junseo Jung | - |
dc.contributor.author | Hyeongmuk Lim | - |
dc.contributor.author | Bohm-Jung Yang | - |
dc.date.accessioned | 2024-03-15T22:01:05Z | - |
dc.date.available | 2024-03-15T22:01:05Z | - |
dc.date.created | 2024-02-06 | - |
dc.date.issued | 2024-01 | - |
dc.identifier.issn | 2469-9950 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/14922 | - |
dc.description.abstract | We study the relation between the quantum geometry of wave functions and the Landau level (LL) spectrum of two-band Hamiltonians with a quadratic band crossing point (QBCP) in two-dimensions. By investigating the influence of interband coupling parameters on the wave function geometry of general QBCPs, we demonstrate that the interband coupling parameters can be entirely determined by the projected elliptic image of the wave functions on the Bloch sphere, which can be characterized by three parameters, i.e., the major d1 and minor d2 diameters of the ellipse, and one angular parameter φ describing the orientation of the ellipse. These parameters govern the geometric properties of the system such as the Berry phase and modified LL spectra. Explicitly, by comparing the LL spectra of two quadratic band models with and without interband couplings, we show that the product of d1 and d2 determines the constant shift in LL energy while their ratio governs the initial LL energies near a QBCP. Also, by examining the influence of the rotation and time-reversal symmetries on the wave function geometry, we construct a minimal continuum model, which exhibits various wave function geometries. We calculate the LL spectra of this model and discuss how interband couplings give LL structure for dispersive bands as well as nearly flat bands. © 2024 American Physical Society. | - |
dc.language | 영어 | - |
dc.publisher | AMER PHYSICAL SOC | - |
dc.title | Quantum geometry and Landau levels of quadratic band crossings | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001174196600005 | - |
dc.identifier.scopusid | 2-s2.0-85183036927 | - |
dc.identifier.rimsid | 82520 | - |
dc.contributor.affiliatedAuthor | Junseo Jung | - |
dc.contributor.affiliatedAuthor | Hyeongmuk Lim | - |
dc.contributor.affiliatedAuthor | Bohm-Jung Yang | - |
dc.identifier.doi | 10.1103/PhysRevB.109.035134 | - |
dc.identifier.bibliographicCitation | Physical Review B, v.109, no.3 | - |
dc.relation.isPartOf | Physical Review B | - |
dc.citation.title | Physical Review B | - |
dc.citation.volume | 109 | - |
dc.citation.number | 3 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |