BROWSE

Related Scientist

john,mcbride's photo.

john,mcbride
인공지능및로봇기반합성연구단
more info

ITEM VIEW & DOWNLOAD

The physical logic of protein machines

DC Field Value Language
dc.contributor.authorJohn M. Mcbride-
dc.contributor.authorTsvi Tlusty-
dc.date.accessioned2024-03-14T22:00:22Z-
dc.date.available2024-03-14T22:00:22Z-
dc.date.created2024-02-19-
dc.date.issued2024-02-
dc.identifier.issn1742-5468-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/14907-
dc.description.abstractProteins are intricate molecular machines whose complexity arises from the heterogeneity of the amino acid building blocks and their dynamic network of many-body interactions. These nanomachines gain function when put in the context of a whole organism through interaction with other inhabitants of the biological realm. And this functionality shapes their evolutionary histories through intertwined paths of selection and adaptation. Recent advances in machine learning have solved the decades-old problem of how protein sequence determines their structure. However, the ultimate question regarding the basic logic of protein machines remains open: how does the collective physics of proteins lead to their functionality? and how does a sequence encode the full range of dynamics and chemical interactions that facilitate function? Here, we explore these questions within a physical approach that treats proteins as mechano-chemical machines, which are adapted to function via concerted evolution of structure, motion, and chemical interactions.-
dc.language영어-
dc.publisherInstitute of Physics-
dc.titleThe physical logic of protein machines-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid001157461500001-
dc.identifier.scopusid2-s2.0-85185177341-
dc.identifier.rimsid82545-
dc.contributor.affiliatedAuthorJohn M. Mcbride-
dc.contributor.affiliatedAuthorTsvi Tlusty-
dc.identifier.doi10.1088/1742-5468/ad1be7-
dc.identifier.bibliographicCitationJournal of Statistical Mechanics: Theory and Experiment, v.2024, no.2-
dc.relation.isPartOfJournal of Statistical Mechanics: Theory and Experiment-
dc.citation.titleJournal of Statistical Mechanics: Theory and Experiment-
dc.citation.volume2024-
dc.citation.number2-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.relation.journalWebOfScienceCategoryPhysics, Mathematical-
dc.subject.keywordPlusCONFORMATIONAL SELECTION-
dc.subject.keywordPlusINDUCED-FIT-
dc.subject.keywordPlusSIGNAL-TRANSDUCTION-
dc.subject.keywordPlusENZYME SPECIFICITY-
dc.subject.keywordPlusSINGLE-PARAMETER-
dc.subject.keywordPlusCOUPLED BINDING-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusPROMISCUITY-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorbiomolecules-
dc.subject.keywordAuthorcomputational biology-
dc.subject.keywordAuthorprotein function and design-
Appears in Collections:
Center for Soft and Living Matter(첨단연성물질 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse