BROWSE

Related Scientist

ccp's photo.

ccp
기후물리연구단
more info

ITEM VIEW & DOWNLOAD

Impact of greenhouse warming on mesoscale eddy characteristics in high-resolution climate simulations

Cited 0 time in webofscience Cited 0 time in scopus
116 Viewed 0 Downloaded
Title
Impact of greenhouse warming on mesoscale eddy characteristics in high-resolution climate simulations
Author(s)
Junghee Yun; Kyung-Ja Ha; Sun-Seon Lee
Publication Date
2024-01
Journal
Environmental Research Letters, v.19, no.1
Publisher
Institute of Physics Publishing
Abstract
Mesoscale eddies are prevalent throughout the global ocean and have significant implications on the exchange of heat, salt, volume, and biogeochemical properties. These small-scale features can potentially influence regional and global climate systems. However, the effects of climate change on ocean eddies remain uncertain due to limited long-term observational data. To address this knowledge gap, our study focuses on examining the impact of greenhouse warming on surface mesoscale eddy characteristics, utilizing a high-resolution climate simulation project. Our model experiments provided valuable insights into the potential effects of greenhouse warming on mesoscale eddies, suggesting that mesoscale eddies will likely become more frequent under greenhouse warming conditions and exhibit larger amplitudes and radii, especially in regions characterized by strong ocean currents such as the Antarctic Circumpolar Current and western boundary currents. However, a distinctive pattern emerged in the Gulf Stream, with increases in eddy occurrence and radius and significant decreases in eddy amplitude. This phenomenon can be attributed to the relationship between eddy lifespans and their properties. Specifically, in the Kuroshio Current, the amplitude of eddies increased due to the increased occurrence of long-lived eddies. In contrast, in the Gulf Stream, the amplitude of eddies decreased significantly due to the decreased occurrence of long-lived eddies. This distinction arises from the fact that long-lived eddies can accumulate more energy than shorter-lived eddies throughout their lifetime. These findings provide valuable insights into the complex dynamics of mesoscale eddies in a warming world.
URI
https://pr.ibs.re.kr/handle/8788114/14821
DOI
10.1088/1748-9326/ad114b
ISSN
1748-9326
Appears in Collections:
Center for Climate Physics(기후물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse