Unique toric structure on a Fano Bott manifold
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cho, Yunhyung | - |
dc.contributor.author | Eunjeong Lee | - |
dc.contributor.author | Masuda, Mikiya | - |
dc.contributor.author | Park, Seonjeong | - |
dc.date.accessioned | 2024-02-19T22:00:14Z | - |
dc.date.available | 2024-02-19T22:00:14Z | - |
dc.date.created | 2024-02-19 | - |
dc.date.issued | 2023-12 | - |
dc.identifier.issn | 1527-5256 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/14814 | - |
dc.description.abstract | We prove that if there exists a c1-preserving graded ring isomorphism between integral cohomology rings of two Fano Bott manifolds, then they are isomorphic as toric varieties. As a consequence, we give an affirmative answer to McDuff’s question on the uniqueness of a toric structure on a Fano Bott manifold. © 2023, International Press, Inc.. All rights reserved. | - |
dc.language | 영어 | - |
dc.publisher | International Press, Inc. | - |
dc.title | Unique toric structure on a Fano Bott manifold | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001166416300001 | - |
dc.identifier.scopusid | 2-s2.0-85184389544 | - |
dc.identifier.rimsid | 82586 | - |
dc.contributor.affiliatedAuthor | Eunjeong Lee | - |
dc.identifier.doi | 10.4310/JSG.2023.v21.n3.a1 | - |
dc.identifier.bibliographicCitation | Journal of Symplectic Geometry, v.21, no.3, pp.439 - 462 | - |
dc.relation.isPartOf | Journal of Symplectic Geometry | - |
dc.citation.title | Journal of Symplectic Geometry | - |
dc.citation.volume | 21 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 439 | - |
dc.citation.endPage | 462 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |